Oxid ceričitý: Naděje pro medicínu i elektrotechniku

žlutý prášek

Oxid ceričitý patří k intenzivně zkoumaným materiálům, bez kterého se neobejde moderní biomedicína, energetika ani elektrotechnika. Významný podíl na výzkumu má také chemik Pavel Janoš, jehož právě skončený projekt „Příprava a charakterizace oxidu ceričitého pro pokročilé aplikace“ podpořený Grantovou agenturou České republiky (GA ČR) přinesl nové pohledy na vlastnosti a možné využití tohoto materiálu.

Oxid ceričitý je jemný prášek většinou světlé žluté barvy. Je nezbytnou součástí automobilových katalyzátorů, neobejde se bez něj výroba moderní elektroniky, ale zejména raketově roste počet jeho aplikací v biologických vědách a v medicíně. Cer se řadí mezi prvky vzácných zemin a díky vysoké poptávce po prvcích, které jej v přírodě doprovázejí (např. dysprosium, samarium) je cer produkován v přebytku.

Zkoumání ceru a jeho oxidu zasvětil svůj život prof. Janoš z Univerzity Jana Evangelisty Purkyně v Ústí nad Labem. „Příčinou jedinečných vlastností oxidu ceričitého jsou jak vlastnosti atomu ceru, který se vyskytuje ve formě trojmocného nebo čtyřmocného kationtu a může snadno přecházet z jedné formy na druhou, tak vlastnosti krystalové mřížky oxidu ceričitého, která je jednoduchá a vysoce stabilní,“ říká. Vědecká cesta Pavla Janoše započala ve Výzkumném ústavu anorganické chemie, kde se zabýval separací ceru ze směsi jiných prvků vzácných zemin. Oxid ceru se v té době využíval například při výrobě skla a lešticích prášků pro leštění bižuterie a optických součástí.


Aparatura pro přípravu aktivního oxidu ceričitého. Foto: J. Štojdl
Aparatura pro přípravu aktivního oxidu ceričitého. Foto: J. Štojdl

Po příchodu na ústeckou univerzitu začal Janoš spolupracovat se skupinou Václava Štengla z Ústavu anorganické chemie v Řeži na problematice tzv. reaktivních sorbentů. Spíše náhodou jeden z jeho diplomantů zjistil, že oxid ceričitý je schopen rozkládat vysoce toxický insekticit s názvem parathion methyl. Výzkum byl postupně rozšířen na studium možností rozkladu dalších organofosforečných pesticidů a nervově paralytických látek s podobnou chemickou strukturou, mezi které patří například sarin, soman či VX agent.

Když studenti prezentovali tyto výsledky na studentské konferenci v Brně, povšiml si některý z posluchačů, že rovnice, kterými je popisován rozklad parathion methylu, se podobají rovnicím popisujícím odštěpování fosforečné skupiny z látky zvané adenosin trifosfát (ATP), což patří k nejdůležitějším reakcím probíhajících v živých organismech. Ovšem reakční podmínky byly zcela odlišné, a to byla nová výzva pro tým prof. Janoše. Vydali se na cestu objevování toho, zda a jak může oxid ceričitý ovlivňovat biochemické reakce. „Museli jsme zvládnout nové experimentální postupy, a hlavně jsme se museli jsme naučit dívat na problémy zcela novým pohledem, což by nás bez té konference patrně nikdy nenapadlo,“ vzpomíná Pavel Janoš na začátek nové větve výzkumu.

Schopnost urychlovat biochemické reakce má řada anorganických látek, pokud jsou připraveny v nanokrystalické formě (souhrnně jim říkáme nanozymy). Janošův výzkum ukázal, že oxid ceričitý urychluje rozklad nejen ATP, ale i dalších biologicky významných látek, mimo jiné i cyklického adenosin monofosfátu (cAMP). „ATP je energeticky bohatá molekula, jejíž rozklad probíhá velice snadno a zrychlení reakcí za přítomnosti oxidu ceričitého tedy není vlastně nijak překvapivé. Naopak cAMP je molekula vysoce stabilní, její poločas rozkladu se odhaduje na miliony let. Obsahuje podobnou vazbu jako DNA a bývá při některých studiích používána jako její analog,“ vysvětluje Janoš, který ukázal, že za přítomnosti oxidu ceričitého se poločas rozkladu cAMP zkracuje z milionů let na desítky minut. Poukázal také na možnost štěpení DNA za přítomnosti oxidu ceričitého.

Schopnost efektivně urychlovat rozklad organofosforečných látek zatím vědci neprokázali u žádného jiného z necelé stovky doposud studovaných oxidů a vše nasvědčuje tomu, že jde o unikátní vlastnost oxidu ceričitého.

Právě proto je třeba výzkumu oxidu ceričitého věnovat další pozornost. Neznáme totiž přesný mechanismus jeho působení při rozkladu organofosforečných látek, ale víme, že schopnost rozkladu těchto látek se může vyskytovat nejen u nanomateriálů, ale i u produktů, které jsou běžně dostupné, jako například lešticí prášky. A to může představovat určité zdravotní riziko.


Prof. Pavel Janoš z Univerzity Jana Evangelisty Purkyně v Ústí nad Labem
Prof. Pavel Janoš z Univerzity Jana Evangelisty Purkyně v Ústí nad Labem

K nejbližším spolupracovníkům prof. Janoše patří Jakub Ederer, Martin Šťastný a Jiří Henych; řadu doktorandů a diplomantů lze stěží vyjmenovat. V článku zmíněný Václav Štengl, který byl po dlouhou dobu motorem týmu, bohužel před několika málo roky zemřel.