Nová metoda dokáže zobrazit jednotlivé molekuly v biologické tkáni

ilustrační_obrázek

Zárodek budoucího života nebo počátek onemocnění mají jedno společné: začínají na úrovni chemických reakcí jednotlivých molekul. Týmu Jana Preislera z Ústavu chemie Přírodovědecké fakulty Masarykovy univerzity se v rámci výzkumu podpořeného Grantovou agenturou ČR (GA ČR) podařilo vyvinout metodu, díky které můžeme v tkáni současně lokalizovat jednotlivé biologicky důležité molekuly a přispět tak k porozumění biologickým procesům.

Detekce molekul nebo atomů lákala vědce od nepaměti. V současnosti existuje řada metod, které mají citlivost potřebnou pro jejich detekci, ovšem lokalizace těchto částic ve vzorku, například v tkáních organismů, a současné potvrzení jejich identity stále představuje jeden z nejnáročnějších úkolů chemické analýzy.

Metody používané pro zobrazení biologicky významných molekul v tkáních často využívají speciální značky, jako jsou například kvantové tečky nebo foton-upkonverzní či jiné nanočástice, které se nejprve navážou na cílové molekuly a poté jsou zobrazeny pomocí fluorescenční nebo elektronové mikroskopie. Tyto značky se obvykle vážou na specifické biomolekuly prostřednictvím specifických protilátek. Nevýhodou existujících zobrazovacích technik ovšem je, že mohou být použity pouze k zobrazení jednoho nebo několika málo typů biomolekul, protože dokáží rozlišit pouze omezený počet značek, a jejich citlivost také není vždy dostačující.

Hmotnostní spektrometrie a značení nanočásticemi

Pro mapování biomolekul v tkáních se často využívá hmotnostní spektrometrie. Jde o metodu, která dokáže velmi přesně změřit hmotnost atomových nebo molekulových iontů a na základě zjištěné hmotnosti je identifikovat. Přestože je hmotnostní spektrometrie velmi citlivá, její citlivost není dostatečná pro detekci jednotlivých atomů a molekul. Přímo je proto možné zobrazit pouze rozložení molekul, které jsou v zobrazované tkáni přítomny v dostatečném množství – například některých lipidů, proteinů, metabolitů a léčiv.

I hmotnostní spektrometrii je však možné využít k detekci biomolekul, které jsou v tkáni obsažené pouze v nepatrném množství, pokud biomolekuly označíme nanočásticemi. Například zlatá nanočástice o průměru 20 nm obsahuje zhruba 250 tisíc atomů zlata a nanočástice o průměru 100 nm dokonce přes 30 miliónů atomů zlata. Počet iontů zlata vytvořených z jediné nanočásticové značky tak může být o několik řádů vyšší než počet výchozích biomolekul.

Nanočásticové značky obsahující jeden nebo více kovových atomů mohou být detekovány pomocí hmotnostního spektrometru, který využívá k ionizaci indukčně vázané plazma o teplotě přes 6 000 °C. V prvním kroku dochází k tomu, že se pixel po pixelu pomocí ultrafialového pulzního laseru odpařují nanočástice specificky navázané na dané biomolekuly v tkáních. Z nanočástic tak vznikají obláčky atomů kovu, které jsou vedeny do plazmatu, kde se ionizují, a posléze jsou detekovány pomocí hmotnostního spektrometru. Výsledkem je mapa rozložení biomolekul ve studované tkáni.

přístroj

Zobrazení jednotlivých molekul pomocí nanočástic

Tým Jana Preislera z Ústavu chemie Přírodovědecké fakulty Masarykovy univerzity se zabývá tím, jak využit lasery k odpaření a ionizaci vzorků ve spojení s hmotnostní spektrometrií. Na pracovišti vyvinuli ablační systém, který namísto obvyklého ultrafialového laseru využívá laser infračervený, pomocí něhož dochází k šetrnému uvolňování neporušených 20nm zlatých nanočástic z tkáně a jejich transportu do plazmatu. Do plazmatu tak není přiveden difúzní obláček atomů zlata, ale neporušené zlaté nanočástice, které jsou atomizovány a ionizovány během velmi krátké doby až v samotném plazmatu.

Výsledkem jsou submilisekundové píky – krátké pulzy signálu iontů zlata. Není tak detekován pouze celkový signál kovu z daného pixelu, ale je možné jednotlivé nanočástice – a potažmo biomarkery na daném pixelu – přesně spočítat. Rozdíl v citlivosti oproti klasické laserové ablaci je proto podobný jako v případě měření intenzity světla v režimu počítání jednotlivých fotonů oproti obvyklému proporčnímu režimu.

Ve spolupráci s kolegy z Ústavu experimentální biologie Přírodovědecké fakulty Masarykovy univerzity a z Výzkumného centra automatické manipulace Fakulty strojního inženýrství Vysokého učení technického v Brně výzkumníci demonstrovali přednosti nové metody při monitorování bujících buněk v 3D agregátech buněk lidského kolorektálního karcinomu.

Výsledkem přesného počítání značek na každém pixelu jsou ostré distribuční mapy relevantního biomarkeru v tkáni. Navíc jsou silně potlačeny signály z oblastí mimo tkáň. Tento přístup může být vhodný i pro současné zobrazení desítek různých biomolekul pomocí značek obsahujících různé kovy, případně i směsi kovů, protože hmotnostní spektrometr dokáže ionty těchto kovů snadno identifikovat a kvantifikovat.

Kromě ionizace v indukčně vázaném plazmatu tým studuje i možnost použití přímé laserové desorpce a ionizace nanočástic. V tomto případě se daří účinně detekovat 100nm zlaté nebo stříbrné nanočástice. Vyvinuté technologie jsou výsledkem téměř desetiletého pracovního úsilí týmu podpořeného několika navazujícími projekty GA ČR. Součástí výzkumu byl vývoj speciální instrumentace a softwaru pro záznam, vyhodnocování a zobrazení dat. Výzkum byl publikován v předním časopise oboru a ve schvalovacím řízení je patentová přihláška na vyvinutou metodu.

prof. Mgr. Jan Preisler, Ph.D.

prof. Mgr. Jan Preisler, Ph.D.