Kolapsy vulkánů do moře způsobují vlny vysoké až 80 metrů. Dochází k nim několikrát za století

Průzkum vulkanické žíly v odlučné oblasti sesuvu San Andrés

Kolapsy vulkánů vedou k obrovským sesuvům hornin. Kde tyto sesuvy můžeme zkoumat? Mohou se obrovské kolosy znovu pohnout a ohrozit obyvatele v příslušných oblastech? Nejen na to, jak probíhá monitoring obřího sesuvu na jednom z Kanárských ostrovů, se zaměřil juniorský projekt GA ČR řešený Janem Blahůtem z Ústavu struktury a mechaniky hornin Akademie věd.

 V roce 2016 se Janu Blahůtovi s týmem naskytla jedinečná příležitost zahájit monitoring na nejmenším z Kanárských ostrovů, na El Hierru. V odlučné oblasti, tj. v oblasti, ze které se sesuly uvolněné horniny, v současnosti uklidněného obřího sesuvu San Andrés umístili velice přesné 3D dilatometry, které měří pohyb.

Na tato měření navázal juniorský projekt financovaný Grantovou agenturou České republiky Dynamika megasesuvu na El Hierru analyzovaná pomocí „big data“ za účelem predikce budoucího chování megasesuvů i na dalších vulkanických ostrovech.

Geologická mapa ostrova El Hierro s umístěním obřího sesuvu San Andrés (SAL) a fotografií odlučné plochy

Geologická mapa ostrova El Hierro s umístěním obřího sesuvu San Andrés (SAL) a fotografií odlučné plochy

„V projektu jsme se podrobněji zaměřili na vývoj a chování tohoto obřího sesuvu. Přímo na místě jsme zjistili, že sesuv byl v minulosti aktivní nejméně dvakrát. Před asi 550 tisíci lety došlo nejprve k většímu pohybu, při kterém se formovaly hlavní morfologické tvary sesuvu. Před asi 183 až 52 tisíci lety pak došlo k menšímu pohybu v řádu desítek až stovek metrů, ze kterého se zachovaly zbytky křemičité vrstvy. Ta vznikla zahřátím a třením hornin na odlučné ploše,“ uvádí doktor Jan Blahůt.

Křemičité vrstvy vznikají zejména na zlomech v seismicky aktivních oblastech, ale nám se podařilo je poprvé identifikovat ve vulkanickém prostředí“, upřesňuje zjištění projektu.

Výzkum probíhal s využitím strukturní a mikrostrukturní analýzy, datování kosmogenních izotopů a samozřejmě také díky mapování přímo na místě.

Mikrofotografie vzorku hornin z odlučné plochy sesuvu San Andrés, pomocí kterých byly identifikovány historické akceleraceMikrofotografie vzorku hornin z odlučné plochy sesuvu San Andrés, pomocí kterých byly identifikovány historické akcelerace

 Kolaps vulkánu můžeme zažít během našeho života

Kolapsy vulkánů jsou v průběhu geologického času poměrně časté, ale v lidském časovém měřítku k velkým kolapsům dochází jen několikrát za století. Doposud máme informace asi o 180 obřích sesuvech, které dosahují velikosti až desítek tisíc km2 a objemu až několika tisíců km3. Nejdelší z nich jsou i několik stovek kilometrů dlouhé a končí v kilometrových mořských hlubinách. „To navíc dělá výzkum obtížnější, protože o mořských hlubinách toho víme neporovnatelně méně než třeba o povrchu Marsu nebo Měsíce. V současnosti je zmapováno jen asi 20 procent povrchu dna, a to navíc většinou v mělkých pobřežních oblastech,“ upřesňuje Jan Blahůt.

Kontrola přesného 3D modelovacího přístrojeKontrola přesného 3D monitorovacího přístroje

V současné době vykazuje obří sesuv na El Hierru pomalé ploužení v řádu do 1 milimetru za rok. Díky přesné analýze dat o tomto pohybu a jejímu porovnání se seismickou činností a srážkami byli vědci schopni identifikovat několik různých módů chování sesuvu v závislosti na endogenních (zemětřesení) a exogenních (srážky) impulsech. Při analýze byl využit inovativní přístup k určení stavů napětí a byly identifikovány pulsy, které vedly ke čtyřem módům chování sesuvu. Navíc se odborníkům z Ústavu struktury a mechaniky hornin Akademie věd podařilo pomocí inovativní automatizované analýzy časových řad z 3D dilatometrických měření odvodit výrazné změny v pohybu sesuvu.

Odlučná plocha obřího sesuvuOdlučná plocha obřího sesuvu

Silné zemětřesení může sesuvy znovu rozpohybovat

Aby vědci zjistili, kdy se může tento sesuv znovu dát do pohybu, provedli stabilitní analýzy, které ukázaly, že sesuv je v současné situaci stabilní, ale k jeho destabilizaci by stačilo zemětřesení o intenzitě VII a vyšší. To se v historické době, tedy v posledních 500 až 600 letech, na Kanárských ostrovech nevyskytovalo. V minulosti se takto silná zemětřesení ale na souostroví vyskytla. Na analýzu stability navázal i výzkum možné vlny tsunami, která by z takové akcelerace mohla vzniknout. „Přestože jsme se drželi konzervativního postupu a modelovali jsme pouze menší blok o velikosti asi 6 km3, případná vlna, která by vznikla, by byla znát i na pobřeží jihozápadní Evropy a v severozápadní Africe. Přímo na Kanárských ostrovech by vlny dosáhly velikosti až 80 metrů, což odpovídá historickým údajům z jiných kolapsů vulkánů,“ říká Jan Blahůt.

Model šíření vln v Atlantickém oceánu u pobřeží Španělska, Portugalska a Maroka, vzniklých z možného kolapsu sesuvu San AndrésModel šíření vln v Atlantickém oceánu u pobřeží Španělska, Portugalska a Maroka, vzniklých z možného kolapsu sesuvu San Andrés. T0 až T24 vyjadřuje čas v hodinách, velikost modelovaných vln pak barevná škála.

Vědcům se podařilo proniknout do minulosti, přítomnosti a snad i budoucnosti chování jednoho obřího sesuvu. Přesto zbývá ke zkoumání ještě mnoho neznámých. Poznatky je také možné porovnat i s jinými lokalitami na Zemi.