Chemik Jan Storch z Ústavu chemických procesů Akademie věd České republiky se zaměřuje na hybridní organicko-anorganické materiály. Jeho výzkum usnadňuje detekci chirálních molekul, které jsou klíčové v mnoha biologických a chemických procesech, kde různé zrcadlové formy mohou mít odlišné vlastnosti a účinky. Výsledky také přispívají k rozvoji pokročilých technologií v optice a elektronice. Jeho výzkum podpořila Grantová agentura České republiky (GA ČR).
Důležitým směrem výzkumu v oblasti chemie a materiálových věd je využití nanostruktur a kovových povrchů, které dokáží vytvářet plazmony. Plazmony si můžeme představit jako vlny na hladině vody, které vznikají, když do ní hodíte kámen. Voda se při tvorbě vln pohybuje jako celek, jednotlivé molekuly neputují s vlnou, ale předávají si energii. A stejně tak oscilují i elektrony v kovu a společně vytvářejí plazmony.
Plazmony mohou být vybuzeny fotony (světlem), a naopak mohou fotony samy generovat. Podobně mohou být vlny na vodě vybuzeny větrem nebo vhozením kamene, a naopak mohou interagovat s dalším prostředím na hladině. Hlavní rozdíl mezi těmito jevy je, že plazmony jsou kvazičástice v pevné látce, zatímco vlny na vodě představují mechanické vlnění na povrchu kapaliny. Přesto mají oba jevy společné rysy v kolektivním chování a interakci s okolím.
Obr. 1 – Ilustrativní znázornění helicenu a jeho zrcadlových forem
Jedním z hlavních cílů projektu bylo navrhnout a připravit hybridní plazmonické nanostruktury (tj. složené z organických i anorganických materiálů) s výraznými chirálními vlastnostmi. Chiralita molekuly, jak je znázorněno na obrázku 1, znamená absenci roviny, osy nebo středu symetrie. Chirální molekuly si můžeme představit jako dvě ruce, které nejde vzájemně překrýt. Tyto struktury jsou důležité, protože umožňují zesílit interakci mezi světlem a chirálními molekulami, což zlepšuje citlivost detekčních metod a může být využito při vývoji nových technologií v optice, elektronice a senzorice.
V rámci projektu se výzkumníci zaměřili na studium interakce mezi chirálními organickými molekulami, konkrétně heliceny, a plazmony v kovových a 2D-anorganických nanostrukturách. Tyto interakce vedly k unikátním optickým efektům, které umožňují detekci velmi nízkých koncentrací chirálních molekul. Tento výzkum může mít zásadní význam pro různé aplikace, například v chemii při vývoji citlivých senzorů pro identifikaci chirálních látek či v biologii a medicíně při diagnostice onemocnění, kde přítomnost chirálních biomolekul může naznačovat specifické zdravotní stavy.
Vědeckým týmům se podařilo syntetizovat nové deriváty helicenů, které sloužily jako chirální modifikátory plazmonických nanostruktur. Heliceny, díky svým unikátním optoelektronickým vlastnostem a výrazné optické aktivitě, představují ideální komponenty pro kombinaci s plazmonickými materiály. U takto vytvořených hybridních struktur byla testována schopnost interagovat s chirálními molekulami pomocí povrchově zesílené Ramanovy spektroskopie (SERS). Výsledky ukázaly, že tyto struktury jsou schopny detekovat chirální molekuly s vysokou citlivostí a specificitou.
Plazmonicky aktivní 2D materiály: Potenciál pro nové aplikace
Další klíčovou oblastí výzkumu byla příprava plazmonicky aktivních 2D materiálů, konkrétně MXenů. Tyto materiály, které jsou tvořeny tenkými vrstvami karbidů a jejichž tloušťka se tak pohybuje na atomárním měřítku, vykazují výjimečné mechanické a optické vlastnosti. Výzkumníci na tyto tenké vrstvy připojili modifikátory v podobě helicenových derivátů a připravili tak MXenové vločky (Ti3C2Tx), aby mohli studovat jejich chirální optickou odezvu.
Nová třída materiálů byla testována na schopnost polarizačně citlivé přeměny světla na teplo, což znamená, že teplo lze generovat cíleně pomocí kruhově polarizovaného světla (pravotočivého nebo levotočivého). Tento jev může být využit například v řízených chemických reakcích nebo v zařízeních, která přeměňují světlo na energii. Vědci rovněž prokázali jejich potenciál v polarizačně citlivé fotokatalýze za asistence plazmonů. Tyto výsledky představují první demonstraci tohoto typu plazmonicky aktivního 2D materiálu s chirální odezvou, což otevírá nové možnosti v oblastech senzoriky, optoelektroniky a nanofotoniky.
Spolupráce a budoucí směřování
Projekt přinesl odezvu ve špičkových vědeckých časopisech. Publikace posouvají hranice lidského poznání v oblasti chirálních plazmonických nanostruktur, ale také demonstrují vysokou úroveň mezinárodní spolupráce a vědecké excelence. Spolupráce mezi Ústavem chemických procesů AV ČR a Ústavem inženýrství pevných látek (Fakulta chemické technologie VŠCHT Praha) bude nadále pokračovat s cílem rozvíjet získané poznatky a transformovat je do prakticky využitelných technologií.
Ing. Jan Storch, Ph.D.