Světlo a organické látky jako motor pro chemické reakce

ilustracni foto

Chemik Radek Cibulka z Vysoké školy chemicko-technologické se snaží položit základy nových metod pro fotochemické redukce, díky kterým bychom v budoucnu mohli v některých chemických syntézách nahradit toxické nebo drahé kovy. V loňském roce za svůj projekt získal čestné uznání předsedy Grantové agentury České republiky.

 V syntetických chemických reakcích, které nám umožňují připravit řadu užitečných látek, například léčiv, barviv nebo organických materiálů, se uplatňují rozličná činidla a katalyzátory. Ty jsou často vysoce účinné a selektivní, ale mohou být problematické z hlediska životního prostředí z důvodu jejich toxicity a nebezpečnosti, nebo jsou velmi drahé a s omezenou dostupností.

Výzkum Radka Cibulky nás přiblížil k možnosti provádět redukce v organické syntéze ekologičtější cestou pomocí světla a jednoduchých organických látek, které se běžně vyskytují v buňkách živých organismů, a které nazýváme flaviny. Flaviny jsou obsažené ve více než tisícovce enzymů, kde zastávají řadu funkcí, zejména při přenosu elektronů. Nejznámější z flavinů je vitamín B2, riboflavin, který si řada organismů vyrábí. Člověk tuto schopnost nemá, a proto jej musí přijímat v potravě.

Světlo jako zdroj energie

Doménou Radka Cibulky je fotoredoxní katalýza, tedy oblast chemie, která využívá světlo a katalyzátory k pohánění chemických reakcí. Princip fungování takových reakcí není složitý: když na molekulu katalyzátoru posvítíme viditelným světlem, tak jej pohltí a dostane se do vyššího energetického stavu, ve kterém je reaktivnější než ve stavu základním, a ochotněji tak reaguje s okolními látkami.

Fotoredoxní katalyzátory mohou výchozí chemické látky buď oxidovat, nebo redukovat. Známe řadu silných fotochemických oxidačních činidel, ovšem skutečně silné fotoredukční činidlo nám bylo ještě donedávna neznámé. „V době, kdy jsme žádali o grant, už byly známé redukční systémy fungující na bázi organických molekul a světla, ale rozhodně nebyly dostatečně silné. Naším cílem bylo najít katalyzátor, který by umožňoval redukce chemicky těžko opracovatelných systémů, jako jsou například elektronově bohaté halogenbenzeny,“ vysvětluje Radek Cibulka hlavní smysl jeho výzkumu. „V průběhu řešení projektu se začaly objevovat zahraniční práce na podobné téma, které nám potvrdily, že jde o důležitý a atraktivní směr výzkumu a konkurenční prostředí.“

Flavin jako klíč

Vhodné organické redukční činidlo začal Radek Cibulka hledat mezi flaviny. „Vycházeli jsme z toho, že flaviny vystupují v přírodě jako oxidační i redukční činidla, a navíc jsou schopná absorbovat viditelné záření. Chemici je běžně využívají v oxidačních reakcích, ale my jsme měli na základě předchozích výzkumů signály, že by mohly mít daleko větší uplatnění při redukcích,“ popisuje jeden z důležitých momentů.

Prvním krokem k úspěchu výzkumu Radka Cibulky a jeho kolegů bylo nalezení vhodného derivátu flavinů. Kromě svých zkušeností a popisu vlastností jednotlivých derivátů využíval také kvantově chemické výpočty. „Odhalit správný derivát byl asi nejtěžší krok celého projektu. Nejprve jsme zkoušeli využít analoga vitamínu B2, ale s výsledky jsme nebyli spokojeni, a proto jsme se uchýlili k jinému derivátu, deazaflavinu.“ Ten se vyskytuje ve fotosběrných systémech některých enzymů, a jeho redoxní potenciál je daleko zápornější, což indikuje, že je vhodnější pro redukce. „Jakmile jsme to zjistili, tak se projekt rozběhl na plné obrátky,“ popisuje Radek Cibulka.

V další fázi bylo nutné katalyzátory syntetizovat a otestovat na modelových reakcích. „První pokusy neměly příliš vysoké výtěžky, ale jak já říkám, když je výtěžek 10 %, tak proč by nemohl být 90 %,“ přibližuje Radek Cibulka své odhodlání. Zvýšit výtěžek se chemikům podařilo díky vhodné úpravě struktury deazaflavinových katalyzátorů, optimalizaci rozpouštědel a také množství aditiv přidávaných do reakční směsi. Nalezenou metodiku pro redukce pak ve skupině Cibulky vyzkoušeli na širokém spektru substrátů, aby zjistili její případná omezení.

Zásadní a velmi náročnou částí projektu bylo prokázání reakčního mechanismu, který musel Radek Cibulka a jeho kolegové znát, aby mohli metodu dále rozvíjet. Bylo potřeba ukázat, které zásadní meziprodukty se v reakční směsi vyskytují. „Ve fotoredoxní katalýze to často bývají radikály a molekuly v excitovaném stavu, což jsou částice žijící jen velmi krátkou dobu. Jejich prokázání tedy není jednoduché a výzkum je časově náročný,“ vysvětluje Cibulka. Mechanismus reakce řešil ve spolupráci s kolegy z Univerzity v Regensburgu a jeho znalost navíc pomohla výsledky opublikovat v prestižním odborném časopise.

Před tím, než budeme moci flaviny při redukcích běžně využívat, třeba v průmyslovém měřítku, čeká chemiky ještě dlouhá cesta. „Zatím se pohybujeme v oblasti základního výzkumu a širší využití bude vyžadovat další zkoumání. Budeme muset například vyřešit otázku stability flavinů, protože většina z nich je mimo enzym relativně nestabilní. Když je porovnáme s tradičními kovovými redukčními katalyzátory, tak zjistíme, že vydrží jenom omezený počet katalytických cyklů,“ uzavírá svůj výzkumný příběh chemik Cibulka.

Díky grantové podpoře se mohlo do výzkumu Radka Cibulky zapojit několik magisterských i doktorských studentů, vznikla knižní publikace a také několik kvalitních odborných článků, včetně dvou velmi prestižních publikací v časopisech Nature a Nature Communications.


prof. Ing. Radek Cibulka, Ph.D.
prof. Ing. Radek Cibulka, Ph.D.

O výzkumu Radka Cibulky můžete zhlédnout video, které bylo natočeno Nadací Experientia při příležitosti udělení Ceny Rudolfa Lukeše Českou chemickou společností za články z oblasti flavinové katalýzy.