Před deseti lety získal ve fotovoltaice nejčastěji užívaný polovodič křemík silného konkurenta – organicko-anorganické halogenidové perovskity. Od roku 2012 dokázali vědci zvýšit jejich fotovoltaickou účinnost na hodnotu přesahující 25 procent, zatímco u křemíku trval nárůst na stejnou hodnotu více než 60 let. Jak je možné, že tyto materiály dosáhly takto vysokých účinností za tak krátký čas? Martinu Ledinskému z Fyzikálního ústavu Akademie věd se díky Juniorskému grantovému projektu GA ČR podařilo dokázat, že defekty ve struktuře těchto materiálů nemají zásadní dopad na jejich optoelektronické vlastnosti, a tedy ani na účinnost fotovoltaické přeměny energie.
V čem spočívá výhoda perovskitů oproti křemíku?
Nedokonalosti krystalové mříže, takzvané defekty, jsou jedním z největších problémů fotovoltaiky, protože omezují účinnost fotovoltaického článku. U polovodičů, jako jsou křemík, arsenid gallia nebo germanium, je pro výrobu účinných solárních článků nutné připravit téměř dokonalý monokrystal. Monokrystal je obvykle velmi pomalu tažen z roztaveného materiálu při teplotách převyšujících 1000 °C. Jeho příprava je tedy energeticky velmi náročná.
Když se před deseti lety objevila pro fotovoltaiku úplně nová skupina polovodičů, halogenidových perovskitů, vědci z tohoto oboru velmi rychle poznali, že tyto materiály v sobě ukrývají obrovský potenciál. Důvod byl možná trochu překvapivý, ukázalo se totiž, že velmi dobře svítí, například v LED struktuře. To je znak vysoké kvality polovodiče a dobrý předpoklad pro excelentní výsledky ve fotovoltaice.
Halogenidové perovskity jsou připravovány za relativně velmi nízkých teplot 60 až 90 °C, což je velmi výhodné z hlediska energetických nákladů. Navíc je potřeba jen necelý mikrometr tenká vrstva a to je téměř tisíckrát méně materiálu než v případě křemíku. Ale právě nízká teplota vede k materiálům s velmi vysokou hustotou defektů, která je u perovskitů o několik řádů vyšší v porovnání s křemíkovým monokrystalem. Přesto všechna měření ukazují na velmi kvalitní materiál, který defekty významně neomezují.
Martin Ledinský, řešitel projektu
Čím to je, že u perovskitů nevadí defekty, a jsou vhodné pro fotovoltaiku?
Zásadní pro pochopení defektů v halidových perovskitech je pojem elektricky aktivní defekt, který jsme v našich pracích zavedli. Foton slunečního světla pohlcený v polovodiči v solárním článku vygeneruje elektron ve vodivostním pásu a zanechá ve valenčním pásu odpovídající díru, která se chová jako kladný náboj. Velká většina defektů v halidových perovskitech s těmito volnými nosiči náboje vůbec neinteraguje a především neumožňuje jejich zpětnou rekombinaci. V důsledku toho se elektrony a díry mohou v perovskitech volně pohybovat na vzdálenosti několika stovek nanometrů, což jsou vzdálenosti zcela dostačující pro efektivní fotovoltaickou přeměnu. Takovéto defekty potom nazýváme elektricky neaktivními defekty. Důsledkem jejich neaktivity je vysoká účinnost luminiscence. Při osvětlení tyto defekty dokonce migrují materiálem a zastavují se až na hranicích zrn, což je jeden z čisticích mechanismů snižující hustotu defektů. Halidové perovskity se tedy chovají jako velmi kvalitní polovodiče, ačkoli ve skutečnosti mají defektů požehnaně.
Organicko-anorganické halogenidové perovskity, které se využívají pro fotovoltaiku, zkoumají desetitisíce vědců. Jak se vám podařilo objasnit jednu z jejich zásadních vlastností?
Nosiče náboje v polovodičích interagují jak s defekty, tak s kmity mříže – fonony. Rozlišení mezi těmito dvěma efekty je netriviální, ale zásadní. Zatímco interakce s fonony je nevyhnutelná materiálová vlastnost, defektní interakci se dá předcházet, například přípravou kvalitnějšího materiálu – jako je tomu u krystalického křemíku.
Prvotní nápad na experiment, který by oba vlivy odlišil, vznikl během debaty s izraelským kolegou Davidem Cahenem o možném významu výsledků pocházejících ze studia teplotní závislosti absorpčních spekter těchto materiálů. Pro studium defektů jsme si vybrali materiály připravované kolegy ze Solárního centra Technické a vědecké univerzity krále Abdalláha (KAUST). Tato spolupráce nám zajistila nejkvalitnější dostupné vzorky, které mají po implementaci do solárních článků vysoké účinnosti. Na těchto vzorcích jsme měřili fotoluminiscenci halidových perovskitů při různých teplotách. Jak se materiál chladil, ubývalo interakcí nosičů náboje s mřížkou, resp. s fonony, ale příspěvek defektů v materiálu zůstával beze změny. Následkem toho se výrazně měnilo fotoluminiscenční spektrum a z jeho závislosti na teplotě jsme určili, nakolik elektron interaguje s kmity krystalické mříže a nakolik s defekty. Zjistili jsme, že elektrony mnohem více interagují s kmity mříže než se strukturními defekty, a v porovnání s krystalickým křemíkem je interakce s defekty dokonce výrazně nižší, ačkoli na samotný počet defektů halogenové perovskity jednoznačně vedou.
Z našich výsledků vyplývá, že nemá význam pokoušet se o výrobu solárních článků z monokrystalů, ale důležitější je kontrolovat povrch a hranice zrn halidových perovskitů.
Prosadí se perovskity v konkurenci krystalického křemíku?
Porovnání s krystalickým křemíkem je samozřejmě nutné, důležité a do jisté míry jej lze vnímat jako konkurenci. Ale zdá se, že křemík bude v blízké budoucnosti spíše partnerem halidových perovskitů v takzvaných tandemových solárních článcích. Pokud umístíme dva solární články s vhodnými vlastnostmi nad sebe, mohou využívat sluneční záření efektivněji, než když jsou použity jednotlivě. Již dnes jsou dvojčlánky perovskitu a křemíku výhodnější než jejich jednotlivé komponenty. Rekordní účinnost těchto dvojčlánků dosahuje již téměř 30 procent. Proto se tato kombinace zkoumá nejen v laboratořích, ale i ve výzkumných centrech fotovoltaických firem po celém světě. Budoucnost je tedy zřejmě v kombinaci těchto dvou materiálů, i když z pozice halidových perovskitů je nutný ještě velký skok kupředu. Nestačí jen vyrobit účinný perovskitový článek, je také nutné, aby takto vydržel po dobu alespoň 30 let stejně jako křemíková fotovoltaika. To je jedna z navazujících fotovoltaických výzev a téma pro další výzkum.
I ve třetím dílu seriálu se můžete seznámit s řešitel projektů JUNIOR STAR. Tuto grantovou soutěž vypsala Grantové agentura České republiky (GA ČR) poprvé v loňském roce. Celkem podpořila 30 projektů z více než tří stovek. Na projekty, které prošly výběrovým procesem výhradně zahraničních odborníků, získají začínající vědci až 25 milionů korun.
Díky soutěži JUNIOR STAR získávají vědci nejdéle do 8 let od ukončení doktorského studia možnost se vědecky osamostatnit a případně i vybudovat novou vědeckou skupinu s moderním vybavením. Soutěž je určena pro zkušené začínající mladé vědce s významnou zahraniční zkušeností. Tu mohou uchazeči v dalších letech získat například i díky letos nově vyhlášené soutěži POSTDOC INDIVIDUAL FELLOWSHIP.
Další podpořené projekty naleznete v prvním a druhém dílu seriálu. Jeho pokračování můžete očekávat v dalších týdnech.
POKROČILÉ STRUKTURY PRO TEPELNOU IZOLACI V EXTRÉMNÍCH PODMÍNKÁCH
Ing. Mohanapriya Venkataraman, Ph.D., Fakulta textilní Technické univerzity v Liberci
„Pocházím z Indie, kde je oproti Česku teplé podnebí, a proto mi bývá občas chladno. Díky tomu jsem si uvědomila, jak důležitý je náš výzkum, jehož zásluhou vzniknou materiály, které ochrání lidi před extrémními klimatickými podmínkami.“
Mohanapriya Venkataraman si v rámci projektu JUNIOR STAR klade za cíl popsat mechanismus přenosu tepla a vytvořit systém pro konstrukci tepelně izolačních vrstev.
„Hledám nové způsoby, jak zajistit lidem komfort v chladných podmínkách. Zkoumám nové typy materiálů a technik, které poskytnou zvýšenou ochranu v extrémních podmínkách,“ říká vědkyně, která původně pracovala pro známou oděvní společnost Victoria´s Secret. Po několika letech si však uvědomila, že by ji více naplňovalo věnovat se výzkumu, který ji přivedl z rodné Indie až do České republiky na Fakultu textilní Technické univerzity v Liberci, kde působí dodnes.
Vědkyně se s týmem zabývá tepelným chováním vysoce výkonných textilií. V rámci projektu vyvine nové materiály, metodiku vytváření tepelně izolačních vrstev a také vybuduje speciální měřicí tunel pro měření celkových tepelných ztrát textilií v oblastech pod 0°C. Tento přístroj bude důležitým nástrojem pro další vědce, protože současná zařízení jsou založena na měření za standardních klimatických podmínek, a proto nejsou použitelná pro extrémní teploty.
Výsledky projektu přispějí k vývoji lehčího a méně objemného oblečení, které poskytne lepší ochranu v extrémním počasí – zejména vojákům a sportovcům ve vysokých nadmořských výškách.
LOGICKÁ STRUKTURA INFORMAČNÍCH KANÁLŮ
Mgr. Vít Punčochář, Ph.D., Filosofický ústav Akademie věd České republiky
„Projekt přispěje k lepšímu porozumění pojmu informace, který podstatně ovlivňuje charakter současné informační společnosti.“
Projekt JUNIOR STAR propojuje základní filosofické otázky se zajímavými matematickými problémy. Matematika a filosofie jsou vnímány jako velmi odlišné disciplíny, avšak pro tento projekt je matematický přístup stejně nezbytný jako filosofický. Na jedné straně stojí pozoruhodné abstraktní matematické modely informace v podobě tzv. systémů substrukturálních logik. Na druhé straně vyvstává otázka, jak přesně se tyto matematické modely vztahují k realitě mimo obor matematiky a jaká je jejich sféra aplikovatelnosti. Tato otázka představuje složitý filosofický problém, který zatím není vyřešen. Ambiciózní projekt si klade za cíl k tomuto řešení výraznou měrou přispět a pokusit se tak objasnit pojem informace.
„Zkoumám velmi abstraktní téma, které prostupuje všemi aspekty našeho života, jelikož se týká všudypřítomného pojmu informace. Informace je něco, co nám umožňuje překračovat naši bezprostřední zkušenost. Například z pohledu na stopu v písku získáme informaci o předchozí přítomnosti člověka, z pohledu na inkoust na novinovém papíře získáme informaci o událostech odehrávajících se tisíce kilometrů daleko. Schopnost těžit z charakteru bezprostředně dané situace informace o tom, co se odehrává mimo rámec této situace, je zcela klíčová pro naše přežití,“ říká Vít Punčochář z Filosofického ústavu Akademie věd České republiky.
V dnešní době člověk využívá velké množství technologických nástrojů pro práci s informacemi, aniž by měl hluboký vhled do podstaty informace. Podpořený projekt přinese důležité poznatky, díky kterým lépe porozumíme tomuto základnímu pojmu, na kterých současná globální informační společnost stojí.
OBJASNĚNÍ INTERAKCE MEZI NITRIFIKACÍ A OXIDACÍ METANU A NÁSLEDNÉ EKOLOGICKÉ DOPADY
Dr. Anne Daebeler, Biologické centrum Akademie věd České republiky
„Zkoumáme dvě skupiny interagujících všudypřítomných mikrobů, které jsou přímo spojeny s globální změnou. Hlubší poznání této interakce nám pomůže lépe chránit naši planetu před změnami klimatu.“
Podpořený projekt se zaměřuje na dvě skupiny mikrobů – metanotrofy a nitrifikátory. Ty jsou odpovědné za přeměnu reaktivního dusíku a oxidaci metanu, a jsou tak přímo spojeny s globální změnou klimatu. Metanotrofy mohou zabránit emisím skleníkových plynů „požíráním“ metanu, zatímco nitrifikátory obvykle způsobují globální změnu tím, že produkují skleníkové plyny a znečišťují prostředí (např. půdu, vodu a sediment) reaktivním dusíkem.
Řešitelka projektu předpokládá, že vzájemné interakce mezi těmito dvěma skupinami významně ovlivňují rychlost těchto procesů.
„Vždy mě fascinoval obrovský dopad malých forem života, které nelze spatřit pouhým okem. Mikrobi jsou nesmírně rozmanití a vyskytují se všude kolem nás, avšak my toho o jejich interakcích víme prozatím velmi málo. Proto chci zkoumat jejich povahu a zjistit, jaký mají ekologický dopad na planetu Zemi,“ popisuje svůj výzkum Anne Daebeler z Výzkumné infrastruktury SoWa Biologického centra AV ČR.
Projekt přinese důležité poznatky, které lze využít k lepšímu modelování procesů globálních změn a také k vývoji ekologičtějších zařízení a postupů v zemědělství nebo při úpravě vody. Tento projekt se zaměří na prozkoumané vzájemné souvislosti mezi cykly uhlíku a dusíku, což pomůže předvídat i zmírňovat změny klimatu, a chránit tak ekosystémy Země.
Grantová agentura České republiky ve spolupráci s Lidovými novinami připravila sérii článků o základním výzkumu. Druhý díl představí výzkum českých vědců zaměřující se na dlouhověkost hmyzu. Přečíst si můžete také první díl o mikrobotech.
Před čtyřmi desetiletími vědci objevili enzym, který odsouvá dobu smrti buněk. Zdálo se, že s jeho využitím dokážou prodloužit život. I ten lidský. Dnes víme, že je to trochu složitější, ale naděje zdaleka nevymizela. I díky českým vědcům, kteří k poznání „enzymu mládnutí“ – možná překvapivě – přispívají výzkumem dlouhověkého hmyzu.
Radmila Čapková Frydrychová z Biologického centra Akademie věd ČR v Českých Budějovicích nachází předmět svého bádání na zahradě svého výzkumného ústavu – je to čtyřicet včelích úlů. Robert Hanus z Ústavu organické chemie a biochemie Akademie věd v Praze má zase své zkoumané živočichy v laboratoři, v uměle vyrobených termitištích, pravidelně ale také vyráží na výzkum termitů po světě. Oba vědci zkoumají dlouhověkost hmyzu. Jejich společnou studii na toto téma publikoval v dubnu uznávaný mezinárodní odborný časopis Proceedings of the Royal Society B.
„Včelí dělnice i běžný samotářský hmyz žijí v dospělém věku několik týdnů či měsíců. Zato délka života včelí královny (včelaři jí říkají matka) je mnohonásobně delší. Včelí královny se mohou dožít i šesti až osmi let, i když v běžném včelstvu tomu tak nebývá. Včelaři totiž včelí matky vyměňují po dvou či třech letech za mladé, protože je známo, že výkonnost včelstev, a tedy i produkce medu, se stářím královny klesá,“ popisuje doktorka Čapková Frydrychová. „Protože v našem ústavu nechováme včely kvůli produkci medu, ale pro výzkumy, můžeme si dopřávat matky i mnohem starší než ty, které jsou k vidění v běžných produkčních včelstvech. U nich pak můžeme hledat, v čem je tajemství jejich dlouhověkosti.“
Král a královna termita druhu Prorhinotermes simplex, původem z Kuby, v doprovodu dvou dělníků (světlejší barva), vojáka (tmavší barva, velká kusadla) a larvy (bílá barva). Tento královský pár vede svou kolonii v pražské laboratoři již déle než dvacet let.
Foto: Robert Hanus
V porovnání se včelími královnami žijí králové a královny termitů ještě podstatně déle. Na rozdíl od včelích trubců, kteří jsou po oplození královny vyhnáni z úlu a odsouzeni k smrti, žije termití král spolu s královnou dlouhodobě v komůrce termitiště, z níž ostatně nedokážou vylézt, protože vyrostou a vstupní chodbičky se pro ně stanou příliš malými.
Zázračně omládnout
„Před dvaceti lety jsem souběžně studoval sociologii na filozofické fakultě a zoologii na fakultě přírodovědecké v Praze,“ líčí doktor Hanus. „Můj učitel mi říkal: To je nějaké schizofrenní, co kdybys to spojil a zkoumal společenské systémy v přírodě? Třeba společenský hmyz?“ Stalo se.
V Ústavu organické chemie a biochemie mají už téměř šedesát let kolonie termitů přivezené z Kuby. „Jako student připravující diplomku jsem tam jednoho dne přišel a vidím – termiti se nám rojí. To se stává jen jednou za několik let. Pochytali jsme tedy královny a krále, dali je v párech vždy jedna královna a jeden král do skleněné lékovky a přidali nějaké dřevo, aby měli co jíst,“ vzpomíná Robert Hanus. „Postupně jsme jim připravili jejich vlastní domečky a zvětšovali je podle potřeby. Péči o termity přebírali noví studenti. Až jednou jsem si uvědomil, že tu máme kolonie, které žijí deset, dvanáct nebo čtrnáct let – a pořád je v nich stejný král s královnou. Z nepřímých pozorování v terénu se o jejich dlouhověkosti ví. Ale my to tady máme doloženo přesnými záznamy, které vedeme. Od té doby uplynulo dalších pět let, dnes tu tedy prokazatelně máme i dvacetileté krále a královny,“ zdůrazňuje doktor Hanus.
Termitům se dříve říkalo bílí mravenci nebo také všekazi. I když se svým tělem, životem v koloniích i vytvářením velkých hnízd mravencům podobají, patří mezi šváby. Doktor Hanus nesouhlasí ani s českým pojmenováním všekazi. „Ano, lidé mají s termity někdy starosti. Třeba v jižních oblastech Spojených států, kde jsou nepůvodní a dostali se tam zřejmě s nějakým zbožím. Sežerou dřevěné domy, spořádají pražce železničních tratí a podobně. Ale drtivá většina z více než tří tisíc druhů termitů žije v tropických lesích a jsou to velmi užiteční býložravci, kteří podstatně přispívají k obnově lesních ekosystémů,“ říká.
To Radmila Čapková Frydrychová „své“ včely hájit nemusí, o jejich významu při opylování rostlin a produkci medu nikdo nepochybuje. Kromě dlouhověkosti královen je u včel nesmírně zajímavá schopnost regulovat rychlost stárnutí dělnic s ohledem na potřeby včelstva. „Když hrozí populační exploze a ve včelstvu je hodně vyvíjejících se larviček a kukel, začnou dělnice, aby uvolnily místo nadcházející generaci, stárnout rychleji. Mají tedy kratší život,“ popisuje. Pokud je naopak nastupující generace včel nedostatečná nebo je nedostatek mladých dělnic, starší dělnice mohou žít dvakrát až třikrát déle.
„V některých případech dokonce ,omládnou‘, což vidíme na biochemické či fyziologické úrovni,“ vysvětluje doktorka Čapková Frydrychová.
Avšak skutečně pozoruhodný je z pohledu délky života právě rozdíl mezi královnou (a u termitů i králem), která žije dlouhá léta, a řadovými jedinci v dané kolonii. Přitom genetická informace, tedy DNA, je u královny i krále stejná jako u dělnice nebo vojáka.
Vzrušující otázka tedy zní – jak je možné, že královna (a král) dokážou ze své genetické informace „vytáhnout“ o tolik delší život než ostatní nositelé úplně stejných genů?
Na cestě za věčným mládím
A tím se dostáváme k výzkumům, které ve světě trvají již dlouho a k nimž nyní oba zmínění čeští vědci spolu se svými kolegy přispěli právě díky zkoumání hmyzu. Ve druhé polovině 20. století už vědci dobře věděli, že jednotky dědičné informace neboli geny, v nichž jsou zakódovány všechny vlastnosti živých organismů, jsou v jádru buňky uloženy v jakýchsi „balíčcích“. Říká se jim chromozomy. Například člověk jich má 46, přičemž polovinu získá od otce a druhou polovinu od matky. A když se buňka dělí, chromozomy se musejí „překopírovat“ do nově vzniklé buňky, a to bezchybně, jinak by nastala porucha vývoje.
A pak, v sedmdesátých letech minulého století, vědci z různých koutů světa postupně objevili významný poznatek právě o tomto dělení buněk. Každý chromozom má totiž na svých koncích část zvanou telomera, kterou tvoří DNA a proteiny specifického složení. Jednou z funkcí telomer je být jakýmsi „nárazníkem“ – ochranou chromozomů před jejich zkracováním, které nastává u dělících se buněk v průběhu kopírování DNA. Pokud zkrácení chromozomů dosáhne kritické úrovně, další dělení už není možné, buňka přechází do fáze stárnutí a je také náchylnější k poškození různými chorobami. V osmdesátých letech však vědci prokázali, že zkracování chromozomů není přímočaré. Zjistili, že v některých buňkách vzniká enzym zvaný telomeráza, který se navazuje na konce telomer a délku chromozomů prodlužuje, a podařilo se jim potvrdit, že posílená aktivita telomerázy, která udržuje delší chromozomy v některých typech buněk i v lidském organismu, vede k dlouhověkosti jedince.
Samozřejmě to okamžitě vedlo k následujícímu nápadu: kdybychom dokázali telomerázu, třeba uměle vyrobenou, dodávat do více buněk, lidské tkáně by se lépe regenerovaly, a člověk by tedy byl déle mladší a zdravější! Vypadalo to, že elixír mládí je na dosah ruky.
Má to bohužel háček. Telomeráza hodně usilovně „pracuje“ v buňkách nádorových, čímž přispívá k jejich nekontrolovanému množení, o které samozřejmě nikdo nestojí. Takže se před vědci vynořily dva základní cíle. Jednak využít telomerázu pro regeneraci buněk, aniž by to v nich vyvolalo nádorové bujení. Anebo ji pojmout jako základ léčebného postupu proti rakovině – třeba její tvorbu v rakovinných buňkách narušit, a nádor tím zničit.
Na obojím se pracuje dodnes. Je to stále úkol pro takzvaný základní výzkum. Jeho posláním je v tomto případě nejdříve získat co nejvíce znalostí o telomerách a telomeráze, poznat, jak přesně v buňkách fungují, a pak bude jasnější, jak toho využít v medicíně. Základní výzkum obvykle neplatí soukromé firmy, protože pro ně bývá příliš nejistý a dlouhodobý, proto jej zpravidla financují státní instituce. Vědci své poznatky zveřejňují v odborných publikacích, odkud se o nich dozvídají další odborníci a mohou na ně navázat. Zveřejněné výsledky pak také mohou využít soukromé firmy pro své komerční technologie.
Jak to, že žijí tak dlouho? Termití králové a královny se dožívají mimořádně vysokého věku. Vědci zjišťují proč.
Při výzkumu „enzymu mládnutí“ v různých organismech vědce zajímá i to, jestli telomeráza může být jedním z faktorů dlouhověkosti i u společenského hmyzu. Do piplavé práce se pustili také čeští odborníci. „Sledovali jsme s kolegy aktivitu telomerázy v tělních buňkách včelí královny a tělních buňkách dělnic. A opravdu se ukázalo, že u královny je aktivita telomerázy mnohem větší než u dělnic. To jsme pak později viděli i při podobných pokusech u mravenců. Výsledky jsme publikovali v roce 2016,“ vzpomíná doktorka Čapková Frydrychová.
Pak se na ni obrátil doktor Hanus, že by mohli společně udělat podobný výzkum na termitech. Na projekt získali peníze od Grantové agentury ČR, které jim umožnily tři roky bádání.
Zpočátku projekt probíhal dle očekávání – rovněž v tělních buňkách termitích královen a králů byla telomeráza mnohem aktivnější než v buňkách řadových jedinců. Ale pak přišlo pořádné překvapení. „Vycházeli jsme z všeobecně převládajícího přesvědčení, že když bude telomeráza aktivní, budou se prodlužovat konce chromozomů. Ale k našemu překvapení jsme nic takového neviděli!“ zdůrazňuje doktorka Čapková Frydrychová.
„Abychom byli úplně přesní,“ navazuje doktor Hanus, „my nemůžeme s úplnou jistotou říct, že se některá telomera na konci chromozomu neprodloužila. Ale u žádné se nám to přes veškeré úsilí nepodařilo prokázat – a to je významné.“
Následně tedy vědci sledovali, jestli se buňky s vyšší aktivitou telomerázy u hmyzu více dělí, jak by se dalo čekat a jak je tomu třeba u jiných organismů. Ani to však nepozorovali.
Mozaika se teprve skládá
Co se tedy dá z výsledků, které vědci publikovali v Proceedings of the Royal Society B, vyvodit? V první řadě to, že dosavadní poznatky o „enzymu mládnutí“ nejsou univerzální. „Prokázali jsme, že královny a králové nemají nijak delší chromozomy, které by jim umožňovaly déle žít. Ve vztahu k telomeráze bude mechanismus dlouhověkosti u hmyzu zřejmě odlišný, a to, co se o telomeráze píše v učebnicích, nemusí všeobecně platit,“ zamýšlí se Robert Hanus.
„Pokud je telomeráza v buňkách králů a královen spjata s regulací dlouhověkosti, je pravděpodobné, že to bude skrze nějakou jinou její funkci, než je ta, kterou tento enzym zajišťuje obnovu délky telomer,“ navazuje Radmila Čapková Frydrychová. „Máme nějaké hypotézy, snad se nám je podaří ověřit.“
Výzkum tedy skončil prozatím tak, že vědci mají víc otázek než na začátku. V odborné literatuře se objevují vědecké zprávy také z dalších světových laboratoří, které při zkoumání telomerázy třeba u myší, ale i u lidí, dospívají k závěru, že tento enzym má rovněž další funkce, nezávislé na prodlužování telomer. Je možné, že právě tyto funkce se uplatňují při dlouhověkosti společenského hmyzu. Které to jsou?
„O tom si ještě netroufám spekulovat. Děláme základní výzkum, u něho nikdy předem nevíte, k čemu nakonec povede,“ shrnuje doktor Hanus. A doktorka Čapková Frydrychová jen dodává: „Pořád je jasné, že výzkum telomer a telomerázy má obrovský potenciál pro biologii. Základní výzkum je takové skládání mozaiky, do níž světové vědecké týmy přidávají kamínky poznatků, až z nich nakonec vznikne celkový obrázek. Sama jsem moc zvědavá, jaký v tomto případě bude a jestli jej potom dokážeme využít třeba i v medicíně.“
Zkoumání mikrosvěta usnadní vědcům průkopnická technika mikroskopického zobrazení založená na transformaci geometrické fáze světla, která je výsledkem společného projektu Přírodovědecké fakulty Univerzity Palackého v Olomouci a CEITEC Vysokého učení technického v Brně. Metoda transformace geometrické fáze světla rozšířila mikroskopii o nové možnosti kvantitavního fázového zobrazení živých buněk a poskytla měření nanostruktur dříve nedostupná pro optickou mikroskopii.
Metoda zviditelnění objektů mikrosvěta, které jen slabě pohlcují a rozptylují světlo, v minulosti způsobila revoluci v optické mikroskopii a byla oceněna Nobelovou cenou. „Poslední dvě desetiletí přinesla v této oblasti další významný pokrok v podobě kvantitativní fázové mikroskopie, která dává možnost transparentní objekty, jakými jsou například živé buňky a tkáně, výpočetně rekonstruovat a kvantifikovat jejich parametry důležité pro biologii,“ uvedl Zdeněk Bouchal z katedry optiky. Společný projekt PřF UP Olomouc a CEITEC VUT Brno proto cílil na vytvoření nové platformy kvantitativní mikroskopie, později nazvané geometricko-fázová mikroskopie. Metoda využívá nové principy a technologie ovládání světla. „Chtěli jsme tímto způsobem sloučit výhody a překonat omezení dosud užívaných zobrazovacích metod,“ podotkl Zdeněk Bouchal.
Vědci se zaměřili na fázi světla, která přenáší obrazovou informaci a současně hraje zásadní roli při řízení a tvarování světla. Přes živé buňky a jiné transparentní objekty totiž světlo prochází jinou rychlostí než přes okolní prostředí. „Tím je pozměněna optická dráha světla a modulována jeho fáze, obvykle nazývaná dynamická fáze. Stejného efektu je využito u tradičních optických elementů, které díky proměnné tloušťce světlo rozdílným způsobem zpomalují a tím světelné vlny tvarují,“ uvedl Zdeněk Bouchal.
Technologie vyvíjené v posledních letech dávají možnost světelné vlny formovat zcela odlišným způsobem. Slouží k tomu geometrická (Pancharatnam-Berryho) fáze, která nezávisí na optické dráze světla, ale mění se při transformaci jeho polarizačního stavu. „Ovládání světla pomocí geometrické fáze tak nevyžaduje objemovou optiku a je realizováno v tenkých strukturách s řadou dalších výhod. Tato strategie otevřela nové experimentální možnosti a stala se základem vyvinuté geometricko-fázové mikroskopie,“ řekl Zdeněk Bouchal.
Výsledky vědeckého projektu zaměřeného na geometricko-fázovou mikroskopii byly podle Zdeňka Bouchala úspěšně testovány v několika vědeckých oblastech. „V biologickém výzkumu geometricko-fázová mikroskopie prokázala svůj potenciál pokročilým, ale rutinně proveditelným neinvazivním fázovým zobrazením, které bylo realizováno ve snadno dostupném a mimořádně stabilním jednocestném systému,“ uvedl Radim Chmelík, spoluřešitel projektu z VUT v Brně. Experimenty byly zaměřeny na měření suché hmoty buněk, klasifikaci buněk na základě morfologických parametrů a vizualizaci dynamiky živých buněk. „Takové výsledky bylo dříve možné získat jen pomocí dvoucestných systémů, které jsou velmi citlivé na vnější vlivy a mají technicky složité a nákladné provedení,“ upozornil Radim Chmelík.
Provedené experimenty podle Zdeňka Bouchala ukázaly, že princip geometricko-fázové mikroskopie je předurčen pro optickou diagnostiku struktur vytvářených v polymerních kapalných krystalech a plasmonických metapovrších. Tyto struktury totiž disponují prostorově proměnnou anizotropií, která je potřebná pro modulaci geometrické fáze světla. „Za největší přínos pro tuto oblast považujeme měření optické odezvy multifunkčních komponent vytvářených v plasmonických metapovrších, která dosahovala citlivosti až k jednotlivým nanoanténám. To bylo dříve možné jen se skenovací elektronovou mikroskopií,“ řekl Petr Bouchal z VUT, který prováděl experimenty.
Univerzálnost a mezioborový potenciál geometricko-fázové mikroskopie potvrdila její aplikace při studiu přírodních fotonických struktur. V provedeném experimentu se podařilo s vysokým prostorovým rozlišením rekonstruovat kutikulu brouků skarabeů, známých polarizačně selektivním odrazem světla. Experimentální data objasnila prostorovou strukturovanost barev v mikroskopických obrazech těchto brouků. „Nás samotné i odbornou veřejnost překvapilo zjištění, že jednotlivé buňky kutikuly vytvářejí tisíce téměř dokonalých světelných svazků mikrometrových rozměrů, známých jako nedifrakční besselovské svazky. Takové světelné svazky jsou zkoumány v optických laboratořích a náš výzkum dokumentoval jejich první výskyt v přírodě,“ podotkl Petr Bouchal.
Společný výzkumný tým byl tvořen čtyřmi vědeckými pracovníky, třemi postdoktorandy a pěti doktorandy. Výsledky vědecké práce olomouckých a brněnských badatelů byly prezentovány 10 publikacemi v impaktovaných časopisech zahrnujících Nano Letters, Nanoscale, ACS Photonics nebo Scientific Reports. Systém geometricko-fázové mikroskopie vyvinuté v projektu podpořeném GA ČR je patentově chráněn v sedmi zemích světa.
Autor: Přírodovědecká fakulta, Univerzita Palackého v Olomouci
V současnosti je celosvětovou snahou minimalizovat produkci jakéhokoliv odpadu. Nově nastolené trendy se velmi silně dotýkají stavebnictví, které je závislé na omezených zdrojích přírodních a nerostných surovin. Stavebnictví spotřebuje zhruba tolik nerostných zdrojů, kolik veškeré další průmyslové obory dohromady. Přitom v ČR za posledních 30 let nebyl otevřen žádný nový kamenolom, byť experti odhadují, že kapacita těch stávajících bude nejpozději za sedm let z poloviny vyčerpána.
Není tedy překvapením, že se pod drobnohled materiálových inženýrů a expertů na cirkulární ekonomiku již před mnoha lety dostala problematika demolice staveb. Velmi intenzivně se hledají možnosti, jak bezezbytku využít stavební a demoliční odpad, který je z velké části zastoupen betonem. Až donedávna si vědci lámali hlavu nad problémem, jak využít jeho velmi jemné frakce kameniva (menší než 1 mm). Kvůli značně heterogenním vlastnostem totiž nebylo možné tento materiál efektivně recyklovat, a tak končil na skládkách nebo se stal součástí různých zásypů a násypů. Díky podpoře GA ČR se ovšem skupině vědců pod vedením docenta Pavla Tesárka z Fakulty stavební Českého vysokého učení technického v Praze podařilo dokázat, že i tento materiál lze proměnit v hodnotnou surovinu a efektivně ji využít při výrobě nových stavebních materiálů a konstrukcí.
Snímek z elektronového mikroskopu, na kterém lze vidět strukturu mikromletého betonového recyklátu. Ze snímku je patrná velikost zrn, která jsou sto- až tisíckrát menší než zrna původní frakce s velikostí do 1 mm.
V rámci projektu „Možnosti využití mikromletého recyklovaného betonu jako mikroplniva s pojivovými vlastnostmi“ byly tyto jemné frakce upraveny pomocí progresivní technologie mikromletí. Vznikla tak zrna sto- až tisíckrát menší než 1 milimetr. Popisovanou úpravou došlo nejen ke sjednocení frakce kameniva a zbytků ztvrdlého cementového pojiva, ale i k obnažení nezhydratovaných zrn cementu. Vzniklá moučka vykazovala nejen parametry mikroplniva, ale v určité míře i pojiva. Pojivové schopnosti moučky mohou částečně suplovat funkci portlandského cementu, což s sebou přináší další značný benefit pro životní prostředí, zejména přihlédneme-li k faktu, že výroba cementu za sebou kvůli vysokým teplotám výpalu zanechává značnou ekologickou stopu.
Hledání efektivního využití mikromletého betonu si kvůli své komplexní problematice vyžádalo tříleté zapojení zhruba dvaceti osob včetně doktorandů a studentů z Fakulty stavební ČVUT v Praze. Dva doktorandi na dané téma obhájili své disertační práce, další tři studenti diplomové práce. Výzkum byl veden na Katedře mechaniky, ale zapojeny byly i další součásti katedry. Klíčové role při řešení projektu zastávali mladí vědci Ing. Zdeněk Prošek, Ph.D., Ing. Václav Nežerka, Ph.D., a Ing. Jan Trejbal, Ph.D.
Snímek z elektronového mikroskopu, kde lze vidět zapojení mikromletého betonového recyklátu do struktury vyrobené cementové pasty. Betonový recyklát v tomto případě plní funkci mikroplniva a vyplňuje porézní strukturu.
Řešení projektu si vyžádalo aplikaci nejen standardizovaných experimentálních metod, ale i vývoj zcela nových a specifických postupů. Funkci a parametry materiálu bylo nutné zkoumat v souvislostech přes širokou škálu měřítek od úrovně nano/mikro až po makrostrukturu. Zkoumáno bylo několik typů betonového recyklátu. Za všechny jmenujme železobetonové železniční pražce, části konstrukce betonových krytů dálnic či více než sto let staré konstrukční prvky železobetonové průmyslové stavby. Všechny tyto materiály bylo nejprve nutné velmi přesně charakterizovat, protože vlastnosti recyklátu ovlivňuje jeho materiálové složení, stáří a vystavení povětrnostním vlivům atd.
Během zpracování odpadu je podstatný proces hrubé recyklace a třídění na jednotlivé materiály a frakce podle velikosti zrn a obsahu zatvrdlé cementové pasty a kameniva. V rámci projektu byly zkoušeny i různé způsoby drcení. Kromě jemných frakcí odpadního betonu byly používány i odprašky z těžby hornin (např. mramoru, vápence nebo žuly) a vybrané druhotné suroviny (např. struska nebo popílek). Projekt se zaměřil také na optimální poměry zastoupení jednotlivých složek s ohledem na výsledné sledované užitné vlastnosti, jako jsou mechanické, vlhkostní a tepelně-technické vlastnosti. Zároveň byly nové materiály navržené tak, aby byly po ukončení své životnosti plně recyklovatelné.
Snímky z elektronové mikroskopie, kde lze vidět vliv progresivní technologie mikromletí. Na obrázku A) lze vidět původní beton před recyklací a na obrázku B) lze vidět mikromletý betonový recyklát.
Součástí výstupů je i software, který předpovídá výsledné materiálové vlastnosti směsí na základě složení a naměřených dat. Výsledky projektu byly průběžně publikované na českých i zahraničních odborných konferencích a v impaktovaných časopisech, v současné době mají publikace dohromady již přes 30 citací.
V současné době probíhají snahy převést výsledky ze základního výzkumu z projektu do praxe. Za tímto účelem jsou testovány např. lehčené bloky na bázi cementu, ve kterých je část pojiva nahrazena mikromletým betonovým recyklátem a dalšími vhodnými druhotnými surovinami. Kamenivo je ze 100 % nahrazeno recyklátem. Nové bloky mají srovnatelné materiálové vlastnosti např. s pórobetonovými tvárnicemi.
Ukázka obrazové analýzy pro popis tvaru částic mikromletého betonového recyklátu, která byla použita pro popis vlivu různého způsobu mikromletí. Na snímku lze vidět původní snímek z elektronové mikroskopie (A), následně byla jednotlivá zrna zvýrazněna (B) a pomocí software nahrazena elipsami (C), která nejlépe popisuje tvar zrna. Z parametrů elipsy byl následně stanovený tvarový součinitel pro upravený betonový recyklát.
Různé disturbance neboli narušení lesů jsou v současném světě považovány za ožehavý ekologický problém. Jsou však kalamity pro lesy opravdu devastujícím prvkem? Co se děje s ekosystémy po deseti, dvaceti letech a co po několika staletích?
V posledních letech postihují disturbance zejména smrkové porosty polopřirozených a hospodářských lesů po celém území České republiky. Na Šumavě proběhla hlavní kalamita kůrovce již před více než deseti lety, kdy k jejímu velkému rozšíření přispěl i orkán Kyrill, který se prohnal územím v zimě roku 2007. Další známou disturbancí byla vichřice ve Vysokých Tatrách, která v roce 2004 zcela změnila jejich vzhled rozsáhlými polomy, což následně vedlo i k přemnožení dřevokazného hmyzu.
„Od té doby jsme však i přes vyhrocenou diskusi ohledně managementu takto zasažených míst svědky obrovské schopnosti regenerace lesa. Můžeme pozorovat ekologické procesy obnovy, změny biodiverzity nebo změny chemismu půd,“ říká doc. RNDr. Petr Kuneš, Ph.D., z Katedry botaniky Přírodovědecké fakulty Univerzity Karlovy. Podle něho časový odstup zhruba 15 let od takové kalamity již nabízí určitý dlouhodobější pohled na to, co se s ekosystémy v takových případech děje. Avšak lesní ekosystém se vyvíjí v daleko delším časovém období, než jsme schopni během lidského života postřehnout. Proto se tým Petra Kuneše v projektu podpořeném Grantovou agenturou České republiky zabýval disturbancí lesních porostů v řádech tisíců let, a to od doby ledové až po současnost. „Jedině tak můžeme pozorovat nejen přirozenou skladbu lesů, ale i režim přirozených disturbancí. V našem současném pozorování nám totiž chyběla jedna zcela zásadní disturbance, a tou je oheň,“ vysvětluje Petr Kuneš.
Odebrání sedimentu ze dna Popradského plesa
Vědci si pro projekt vybrali jako modelová území právě zmiňovanou Šumavu a Vysoké Tatry. Cílem bylo rekonstruovat způsob šíření smrkových lesů v obou těchto oblastech a v návaznosti na to získat představu o frekvenci různých disturbancí v těchto ekosystémech, odpovědi ekosystémů na ně a také rychlost obnovy.
Oheň postihoval lesy daleko více, než se předpokládalo
Projekt vědců pod vedením Petra Kuneše prokázal, že hlavním a velmi častým typem disturbancí byly v minulých staletích požáry. „Ani nás tak nepřekvapila jejich častá frekvence v minulosti, což jsme již předpokládali na základě předešlých analýz z jiných oblastí. Překvapivé ale bylo zjištění, že časté požáry zachvacovaly i dominantně smrkové porosty. My jsme totiž očekávali, zejména pak na základě výsledků ze Skandinávie, že smrk požáry netoleruje a bude působit spíše jako jejich inhibitor. Na našem území tak zjevně působily odlišné podmínky formující dynamiku lesních jehličnatých porostů, než tomu bylo na severu Evropy, což je zajímavé zjištění i pro ochranu přírody,“ říká Petr Kuneš.
Vědci analýzami zjistili, že dominantní smrkové porosty se v obou oblastech ustavily již před mnoha tisíci lety – na Šumavě před 8 tisíci a v Tatrách již před 9,5 tisíci lety, a od té doby tvořily v obou oblastech stabilní lesní porosty. Zatímco v posledních 150 letech byly lesní požáry v těchto oblastech člověkem eliminovány, v minulých staletích byly součástí přirozeného fungování lesních ekosystémů, udržovaly biodiverzitu a je možné, že pomáhaly zabraňovat acidifikaci, tedy okyselování půdního prostředí.
Práce týmu doc. Kuneše na Prášilském jezeře na Šumavě
„Naše zjištění možná představují nové paradigma pro samotnou ochranu přírody, jejich aplikace ovšem bude vzhledem k legislativním podmínkám během na dlouhou trať,“ obává se doc. Kuneš. Podle něho lze z výsledků projektu usoudit, že změny klimatu mohou mít v budoucnu negativní vliv na více se rozšiřující listnaté dřeviny, jako je například buk.
Co odhalily sedimenty v rašeliništích a jezerech?
Vědci pro řešení projektu potřebovali posbírat co nejvíce dat – sedimentární záznamy, které by umožnily podívat se na přírodu i tisíce let nazpět. Požadované uloženiny poskytovala v již zmiňovaných oblastech Šumavy a Vysokých Tater horská rašeliniště a ledovcová jezera. Ze sedimentů pak vědci extrahovali nejrůznější uchované zbytky pylu, rostlin nebo hmyzu. „Vše jsme následně museli pod mikroskopem určit, přičemž mnohdy jsme pracovali ve vysokém časovém rozlišení. Pro příklad, získaný třímetrový profil jsme zpracovávali po půl centimetrových vrstvičkách. Ale i díky tomu jsme objevili řadu nečekaných věcí,“ říká doc. RNDr. Petr Kuneš.
Jednou z pozoruhodností bylo nalezení ojedinělé vrstvy v sedimentech Prášilského jezera na Šumavě. Datováním vědci zjistili, že náleží do období přechodu mezi časným a středním holocénem poledové doby, v odborných kruzích pojmenované jako události 8.2 (to označuje dobu cca 8200 let před současností). „V jezeře a ekosystémech kolem se v té době vlivem klimatického výkyvu dělo něco výrazného, co zanechalo silný erozní záznam a zároveň značné změny vodního a suchozemského ekosystému,“ vysvětluje Petr Kuneš. Prášilské jezero odhalilo i další překvapení, například doklady o relativně nedávném vymizení vodní výtrusné rostliny šídlatky, která je dnes na našem území kriticky ohrožena, nebo o výskytu dnes vymizelých druhů chrostíků.
Dřevokazný hmyz byl součástí ekosystémů i v minulosti
Podle Petra Kuneše jsou z paleoekologického hlediska současné české lesy produktem zásahů člověka v 19. století. „Dalo by se tak říct, že jeho plody sklízíme právě dnes, a to i s průvodní kůrovcovou kalamitou. Z ekologie ale i paleoekologických záznamů víme, že dřevokazný hmyz byl součástí přirozenějších ekosystémů neustále. Les se nachází v neustálém vývoji, jehož cyklus trvá několik set let, a součástí tohoto vývoje jsou i disturbance. Samozřejmě přirozené lesy, které dnes už na našem území nemáme, mají větší odolnost a schopnost regenerace díky větší druhové rozmanitosti a také odlišné věkové struktuře. Pokud tedy chceme docílit těchto vlastností lesa, měli bychom jít tímto směrem. Nakonec již ze Šumavy je zřejmé, že les je schopen se obnovit sám bez nutných zásahů člověka,“ míní doc. Petr Kuneš z Přírodovědecké fakulty Univerzity Karlovy.
doc. RNDr. Petr Kuneš, Ph.D., vystudoval biologii na Přírodovědecké fakultě Univerzity Karlovy v Praze. Doktorát se zaměřením na paleoekologii vegetace v pozdním glaciálu a časném holocénu obhájil v roce 2008 na katedře botaniky. Od 2009 do 2011 se jako postdoktorand na Department for Geoscience, Aarhus University zabýval minulými interglaciály. Na katedře botaniky PřF UK se nyní zabývá výzkumem a výukou v oblasti kvartérní paleoekologie a historie krajiny.
Grantová agentura České republiky ve spolupráci s Lidovými novinami připravila sérii článků o základním výzkumu. První se zaměřil na výzkum mikrobotů, na kterém se významně podílejí za podpory GA ČR i čeští vědci.
Ponorka o velikosti bakterie, která řízeně proplouvá lidským tělem a je schopna tam uskutečnit lékařské zákroky, zůstává zatím jenom snem. Ale výzkumníci jsou stále blíž k jeho uskutečnění. I díky české vědě.
Bylo to v roce 1966, když ve Spojených státech natočili dvěma Oscary oceněný film Fantastická cesta. Nejen historikové sci-fi, ale i seriózní výzkumníci v oboru robotiky jej dodnes považují za vizionářský počin.
Film se odehrává v době studené války, kdy se západní i východní experti snaží zmenšit předměty, ale také miniaturizovat lidi (jasně, to je úlet, ale je to jen film…). Velkých úspěchů v této oblasti dosáhl československý vědec Jan Beneš. Se svými poznatky utíká na Západ, východní špioni se jej pokusí zabít (to je bohužel realistické i dnes) a doktor Beneš zůstává ležet v kómatu.
Do mozku se mu dostala nebezpečná krevní sraženina, která se nedá běžnými medicínskými postupy odstranit. A tak mu na pomoc vyráží ponorka, vhodně zmenšená včetně pětičlenné lidské posádky uvnitř, takže zabírá velikost mikrobu a dá se do těla vpravit injekční stříkačkou. Z jakéhosi důvodu však v tomto stavu vydrží jen hodinu, pak se zase zvětší. Jak miniaturizaci zajistit trvale, ví jenom doktor Beneš, ale ten to říct nemůže, když je v kómatu a teprve se ho pokoušejí zachránit. Ponorka proplouvá lidským tělem, překonává jeho nástrahy, posádka bojuje i se špionem mezi sebou. Nakonec správní chlapci odstraní sraženinu pomocí laseru a uniknou z vědcova těla slzným kanálkem přes oko dřív, než se stačí zase zvětšit, zato ponorku i se zrádcem spolkne a zničí bílá krvinka.
Podivnosti mikrosvěta
„Co tehdy bylo naprostou fikcí, se dnes stává jasnou vizí pro medicínskou terapii, při níž se mikroroboti budou využívat pro dodání léku do organismu, pro zobrazování vnitřku těla i pro malé chirurgické operace,“ soudí v komentáři pro odborný časopis Science Robotics profesor Holger Stark z Technické univerzity v Berlíně. Jeho komentář hodnotí výzkumnou práci publikovanou v témže uznávaném odborném periodiku a věnovanou možnostem řízení pohybu titěrných objektů – tedy vlastně i potenciálních budoucích mikrorobotů.
Jedním z autorů zmíněné studie je také český vědec. Na rozdíl od filmového doktora Beneše však naštěstí neleží v kómatu a jeho úkolem není zmenšovat předměty z makrosvěta, nýbrž matematicky popsat, co se v mikrosvětě děje.
Tímto vědcem je teoretický fyzik Viktor Holubec, spolupracující s výzkumníky z Lipské univerzity, kde působil po získání doktorátu tři a půl roku jako držitel prestižního německého Humboldtova stipendia. Nyní šestatřicetiletý doktor Holubec pracuje na Matematicko-fyzikální fakultě UK v Praze a jeho práci z velké míry financuje Grantová agentura ČR.
„Zkoumáním pohybu malých částic jsem se zabýval už v rámci bakalářské, pak magisterské práce a také doktorské práce,“ říká. Pochopitelně nešlo o „opravdové“ miniaturní ponorky se strojovnou a posádkou uvnitř. Viktor Holubec se podílí na výzkumu mikroskopických částeček o průměru asi třicetiny tloušťky lidského vlasu plovoucích ve vodě. Mohou být předobrazem budoucích mikroskopických ponorek, ale také třeba současných bakterií – o možnostech jejich pohybu by vědci také rádi věděli víc.
Takto malé objekty, měřené v mikrometrech, tedy tisícinách milimetru, totiž patří do takzvaného brownovského světa. Pojmenování vychází ze jména skotského přírodovědce Roberta Browna, který před dvěma stoletími popsal, jak se hýbou pylová zrnka nebo částice prachu ve vodě. Říká se tomu Brownův pohyb a je odlišný od pohybu větších objektů v makrosvětě (a dnes víme, že se liší i od pohybu subatomárních částic ve světě kvantové fyziky).
Malá částice, třeba bakterie ve vodě, je součástí brownovského světa. V něm do ní a do sebe navzájem stále narážejí molekuly vody, které se pohybují chaoticky. Pokud bakterie aktivně neplave, je v důsledku těchto nárazů náhodně vláčena prostorem. „Totéž platí pro částice, které zkoumáme. Když ji zvenčí,popoženeme‘, pohybuje se požadovaným směrem, ale hned jak působení vnější síly skončí, částice směr ztratí a přejde na náhodný pohyb ovlivňovaný nárazy molekul vody,“ popisuje doktor Holubec.
Doháněná fantazie. Americký film Fantastická cesta (Fantastic Voyage) režiséra Richarda Fleischera z roku 1966 vzbudil zájem myšlenkou titěrné ponorky, která proplouvá lidským tělem – na tomto snímku mozkem. Vědci věří, že něčeho takového opravdu dosáhnou.
Bůh Janus se špatně řídí
Řídit mikroskopické částice tak, aby cíleně proplouvaly kapalinou, se snaží vědci po celém světě. Skupinu, s níž spolupracuje Viktor Holubec, vede profesor Frank Cichos z Lipské univerzity. Výzkumníci zde používají pracovní plošinu o velikosti zhruba čtyř psacích stolů, na níž je umístěn optický mikroskop, laser a zrcadla usměrňující jeho paprsky. Pokusná plocha má velikost pouhého sklíčka do mikroskopu. Pod ním je trocha vody, v níž plavou zmíněné mikročástice. Energii pro pohyb jim dodávají laserové impulzy. Počítač vyhodnocuje snímky pořizované v mikroskopu jednou za 180 milisekund a zjišťuje, kam se částice pohybují. Podle toho řídí následující záblesk laseru.
Částice jsou zpravidla z polystyrenu a pokryté zlatem. To je důležité, protože právě zlato se laserovým impulzem rozehřeje, a tím způsobí pohyb vody od zahřátého místa, čímž se částice posouvá. Tým profesora Cichose v minulosti používal a některé jiné výzkumné skupiny dosud používají polystyrenové částice, které jsou na jedné své polovině pokryty nepatrnou vrstvičkou zlata. Podle římského boha Januse, jenž býval zobrazován se dvěma tvářemi, se jim říká Janusovy částice. Mají ovšem nevýhodu – impulzy energie vedou k pohybu částice v požadovaném směru, jen pokud náhodný pohyb částici tímto směrem natočí.
„Naše skupina začala asi před třemi lety jako první používat částice pokryté malinkými, ale navzájem nepropojenými částečkami zlata,“ vysvětluje Viktor Holubec. „Laser tak může kdykoli zamířit na tu nejvýhodnější zlatou plošku a řídit pohyb částice mnohem efektivněji.“
Jenomže ani tak se zpočátku laserem poháněné částice nepohybovaly podle očekávání. Po impulzu energie mířily trochu jiným směrem, než měly. Výzkumníci se tedy snažili pochopit, jak je to možné, což byla do velké míry práce teoretického fyzika Holubce.
„Nakonec jsme na to přišli. Počítač totiž vyhodnotil mikroskopický snímek, který ukazoval umístění částice, a podle toho určil, kam poslat laserový impulz, aby částici dále posunul. To trvalo 180 milisekund. Takto kratičký časový úsek kolegové považovali za zanedbatelný, ale ukázalo se, že není,“ objasňuje doktor Holubec. „Když jsme všechno znovu propočítali, zjistili jsme, že i tak nepatrné zpoždění hraje v brownovském světě roli. Okolní prostředí stačí za tu chvilku s částicí pohnout a ona pak po impulzu energie zamíří pozměněným směrem.“
Viktor Holubec zdůrazňuje, že právě poznatek o roli zpoždění mezi počítačovým zpracováním informace o poloze částice a spuštěním laseru je významným výsledkem jejich výzkumu publikovaného v časopise Science Robotics. „Zjistili jsme, že k tomu, aby se částice dostala nejrychleji z bodu A do bodu B, není nejlepší ta nejvyšší rychlost, nýbrž rychlost nižší, ale přizpůsobená velikosti zpoždění při zpracování dat. Tento poznatek je významný i pro další objekty, které se v brownovském světě pohybují,“ objasňuje Viktor Holubec.
To však není zdaleka jediný přínos jejich výzkumu. „Částice, s nimiž pracujeme, nedokážou samy přijímat a zpracovávat informace ze svého okolí. Jejich pohyb řídíme zvenčí, ale využíváme k tomu metod umělé inteligence,“ konstatuje vedoucí týmu Frank Cichos. V tomto případě je to takzvané zpětnovazební učení (reinforcement learning). Při něm jde o to, že počítač, který řídí laser, a tedy pohyb částic, se díky algoritmu strojového učení sám učí, jak úkol nejlépe zvládat. Je to celosvětově poprvé, kdy výzkumníci použili tuto metodu umělé inteligence právě pro ovládání mikroskopických částeček v brownovském světě.
Pochopit chování bakterií
Výsledkem by mělo být, že člověk pouze zadá úkol dopravit částice do určitého místa, a propojený systém počítače, mikroskopu a laseru už zařídí, aby se tam skutečně dostaly za nejkratší dobu. Jde tedy o další krok k budoucím mikrorobotům plovoucím lidským tělem?
„Ano i ne,“ říká Viktor Holubec. „Vývoj tím směrem určitě jde, jenom je otázka, jak dlouho to ještě bude trvat. Třeba náš pohon částic pomocí laseru určitě nepůjde v lidském těle použít, nedokážu si představit, jak bychom do něj laserem svítili. Naše poznatky o pohybu mikroskopických částic však mohou být použitelné pro roboty s jiným pohonem. Ale také pro poznání mikrosvěta.“
To je podstata takzvaného základního výzkumu, jehož cílem není okamžitě přijít s vynálezem bezprostředně využitelným v praxi, nýbrž odhalovat zákonitosti fungování našeho světa. O získaných poznatcích doktor Holubec říká, že za nejvýznamnější považuje to, že pomáhá pochopit, co jsou klíčové ingredience prostředí, s nimiž se v lidském těle musejí vypořádat třeba bakterie – obdobně velké jako částice, které vědci zkoumali.
„Naše experimenty nám pomáhají lépe pochopit, proč bakterie dělají to, co dělají. Ony také musejí nějak optimalizovat svůj pohyb v mikrosvětě. Vždycky chvilku plavou, pak se zastaví a náhodně otáčejí, pak zase chvilku plavou. Anebo spermie: ty mají obdobnou velikost a ve stejném brownovském prostředí dokážou, poháněny svým bičíkem, velmi přesně mířit ke svému cíli – vajíčku,“ líčí doktor Holubec.
Takovéto výzkumy však nefinancují soukromé firmy, protože není předem jasné, k čemu při nich vědci dospějí a jak získané poznatky nakonec využijí. V Česku tedy základní výzkum financuje zejména Grantová agentura ČR. „Měli jsme štěstí, zatím jsme dostali všechny granty, o které jsme žádali, s jedinou výjimkou, ale i ten grant jsme pak získali o rok později,“ vzpomíná Viktor Holubec. „Pro financování výzkumu na univerzitě jsou granty klíčové, bez nich bychom nemohli dělat to, co děláme.“
Jeho nynější grant má hodnotu pět milionů korun na tři roky. Z něj dostává svůj plat, platí technické pomůcky i cestování do Německa či zvaní německých vědců do Prahy. „Tyto přímé kontakty se kvůli covidu hodně zkomplikovaly, snad se to brzy zlepší. Bez osobního setkávání je ve výzkumu všechno mnohem složitější,“ povzdechne si.
Dokážeme to
Přestože je při hodnocení dosavadních výsledků opatrný, myšlenka na mikroponorky cíleně putující lidským tělem doktora Holubce neopouští. Vidina, že se takto dopraví lék přesně na místo v těle, kde je zapotřebí, anebo že mikrorobot provede v těle požadovaný chirurgický zákrok, je podle něj zcela realistická, i když ještě nevíme, jak ji naplnit.
„Doprava molekul léku připevněných na vhodnou částici je určitě proveditelná. Chirurgická operace je složitější. Je obtížné si představit, že mikrorobot bude vybaven nějakými nástroji. Spíše předpokládám, že takový zákrok bude provedený chemicky, nějakou sloučeninou, která ve tkáni záměrně zničí to, co by jinak muselo být odstraněno skalpelem,“ zamýšlí se. Hodně nejasnou otázkou zůstává, zda mikroroboti budou někdy uplatnitelní třeba při řízení chemických reakcí v průmyslových výrobních procesech.
Na rozdíl od filmové mikroponorky zmíněné v úvodu tohoto článku, která měla lodní šroub, uvnitř strojovnu a vůbec všechno potřebné k ovládání vlastního pohybu, jsou částice používané v současných pokusech řízeny zvenčí. Do částice o velikosti třicetiny průměru vlasu lidé nedokážou ještě vložit stroj, který by ji poháněl.
„To platí dnes. Ale víme, že titěrné přirozené organismy, bakterie nebo třeba spermie se dokážou pohybovat samy. Takže to jednou musíme zvládnout i my při konstrukci mikrorobotů,“ tvrdí doktor Holubec. „Možná bude zpočátku nejvhodnější cestou přeprogramovat genetický kód mikroorganismů, aby se daly řídit. Ale nakonec jistě sestrojíme i mikroroboty schopné pohybovat se a plnit úkoly i bez vnějšího zásahu. Když to dokážou spermie, dokáže to i robot.“
Jedním z autorů studie je český vědec, na rozdíl od filmového doktora Beneše neleží v kómatu a jeho úkolem není zmenšovat předměty, ale popsat, co se děje v mikrosvětě „Víme, že titěrné přirozené organismy, bakterie nebo třeba spermie se dokážou pohybovat samy. A co dokáže spermie, musí časem dokázat i mikrorobot.“
Bez posádky. Ve filmové mikroskopické ponorce byla i tajuplně zmenšená lidská posádka – na snímku zrovna provádí výsadek v plicích. Reálně vyvíjené mikroskopické ponorky budou zřejmě také řízené lidmi a počítači, ale zvenčí.
Minirobot se provrtá do nádoru
Česká republika je přímo rájem vědců, kteří vytvářejí titěrné roboty. Některé mají podobu zrnka pylu poháněného jako torpédo, jiné by měly být schopné provrtat se do nádoru jako droboučký vrut a zničit jej.
Pylové zrnko je malinké, lehké, plave na vodě, je snadno dostupné a levné. Dá se tedy použít jako šikovný základ pro vytvoření velké „flotily“ plovoucích mikrorobotů. Vědci na jednu stranu očištěného pylového zrnka přilípnou nepatrnou vrstvičku platiny a zrnka vhodí do vody. Do ní přidají peroxid vodíku. Ten se vlivem platiny rychle rozkládá na vodu a kyslík, vznikají bublinky a zrnko ženou dopředu jako torpédo.
Výzkumníci používají pyl pampelišky, borovice, lotosu, slunečnice či máku. Má přirozenou schopnost do sebe vsakovat rtuť, takže čistí životní prostředí.
Tak vypadá jeden z experimentů vědců, které vede sedmačtyřicetiletý profesor Martin Pumera. Vystudoval Přírodovědeckou fakultu Univerzity Karlovy v Praze a osmnáct let působil na univerzitách v zahraničí – v USA, Singapuru či Japonsku. V roce 2017 se vrátil do Česka, nyní je profesorem na pražské Vysoké škole chemicko-technologické a na Středoevropském technologickém institutu (CEITEC) Vysokého učení technického v Brně.
Jeho týmy, do nichž se mu podařilo získat řadu vědců ze zahraničí, se zabývají využitím nanomateriálů (látek o velikosti nanometrů, tedy miliontin milimetru) a také miniaturními roboty.
Raketový motor pro mikrotrubičku
Mikroroboty z pylového zrnka, jejichž výboj profesor Pumera s kolegy popsal loni v odborném časopise Advanced Functional Materials, jsou už starším pojetím. „Jejich pohyb nemůžete řídit, prostě je nasypete do vody, ony tam rejdí všemi směry, navážou na sebe rtuť a vy je pak naberete a z vody odstraníte,“ popisuje Martin Pumera možnosti jejich využití. Samozřejmě je nutné zvolit nasazení v takovém prostředí, v němž by poněkud žíravý peroxid vodíku nevadil.
Oproti tomu mikroponorka, kterou tým profesora Pumery představil letos na jaře v odborném periodiku Small, už reprezentuje vyšší ligu. Také je zamýšlená třeba na odstraňování toxického odpadu z vody. Má tvar trubičky, která je dlouhá asi deset mikrometrů (setinu milimetru) a obsahuje tři vrstvy.
Ve vnitřní vrstvě je sulfid kademnatý, jenž na světle rozkládá okolní vodu. Výsledek je podobný raketovému motoru – z jednoho konce trubičky proudí protony vzniklé rozkladem vody a trubička se tedy pohybuje v opačném směru rychlostí asi 15 mikrometrů za sekundu. Ve střední vrstvě trubičky jsou pak nanočástice železa. Výzkumníci proto mohou slabým magnetickým polem řízeně otáčet trubičku podobně jako střelku kompasu, takže mikroponorka se natáčí požadovaným směrem a „raketový motor“ ji tam pohání. A vnější vrstva obsahuje oxid titaničitý, který na světle umožňuje reakce rozkládající znečišťující chemikálie.
Tato mikroponorka je tedy už zvenčí řiditelná: světlo spouští „raketový motor“, jehož palivem je okolní voda, a magnetické pole určuje směr pohybu. Když nesvítí světlo, mikroponorka se zastaví.
V květnu proto zahájil profesor Pumera nový, čtyřletý projekt, v němž usiluje o vytvoření titěrných robotů schopných pohybovat se v lidském těle. „Samozřejmě je v této fázi nebudeme používat na lidech,“ zdůrazňuje. „Od lékařů dostaneme opravdové lidské rakovinné nádory vyoperované pacientům a na nich budeme v laboratoři ověřovat možnosti našich mikrorobotů. Bude to větší krok k reálnému prostředí, než jaký se komu zatím podařil,“ dodává.
V tomto případě vědci chtějí využít mikroroboty ve tvaru vrutů. Vzorek tkáně s vloženým mikrorobotem se vsune do tunelu v přístroji, jenž je jakousi zmenšenou verzí magnetické rezonance používané v nemocnicích. Elektromagnetické cívky, které tunel obklopují, vytvoří proměnné magnetické pole.
„V něm jsme schopni velmi citlivě řídit otáčení mikrorobotu tak, aby se provrtal nádorovou tkání na požadované místo. Předpokládáme, že k němu přilípneme lék, a ten se tak dopraví přímo na místo, kde by měl účinkovat,“ popisuje profesor Pumera.
Projekt je teprve v začátcích. Kromě Vysoké školy chemicko-technologické se na něm podílejí také 1. lékařská fakulta Univerzity Karlovy, Lékařská fakulta Masarykovy univerzity, pražská Fakultní nemocnice v Motole a také Lékařská fakulta Harvardovy univerzity v USA.
Investice se nakonec vrátí
„Když lidé slyší o našem výzkumu, mívají přehnané představy. Určitě víme, že naše poznatky se do nemocnic nedostanou za pět let. Věřím, že dokážeme změnit léčbu různých nemocí, ale i když se všechno bude dařit, lékaři je využijí nejdřív za deset patnáct let,“ upozorňuje profesor Pumera. Vysvětluje, že takto dlouhodobé projekty si málokterá soukromá firma může dovolit. Proto se na nich podílejí vědecké týmy ze světa a získávají na ně peníze od veřejných institucí.
„My teď máme granty, tedy finanční prostředky na výzkum mikrorobotů a nanomateriálů, z fondů Evropské unie, od Grantové agentury ČR a ministerstva školství, mládeže a tělovýchovy. Jsou to dlouhodobé investice, které se ale lidstvu nakonec mnohonásobně vrátí,“ říká Martin Pumera s jistotou.
Grantová agentura České republiky (GA ČR) v loňském roce podpořila 30 projektů, které jako první uspěly v grantové soutěži JUNIOR STAR. Na projekty vědci získali od GA ČR až 25 milionů korun. Cílem JUNIOR STAR je zlepšit začínajícím vědcům podmínky pro výzkum v České republice.
Projekty JUNIOR STAR jsou zaměřeny na podporu excelentního základního výzkumu. Poskytují příležitost začínajícím vědcům dosáhnout vědecké samostatnosti a případně i vybudovat novou vědeckou skupinu s moderním vybavením. Řešitelé a řešitelky byli vybráni výhradně zahraničními odborníky na základě několikakolového výběrového procesu. Granty jsou určeny badatelům, kteří dokončili doktorát maximálně před osmi lety, již publikovali v prestižních mezinárodních časopisech a mají za sebou významnou zahraniční zkušenost.
Pokračujeme v seriálu, v kterém vás pravidelně seznamujeme s podpořeným projekty JUNIOR STAR. V druhém díle můžete nahlédnout pod pokličku dalších unikátních vědeckých projektů.
ÚLOHA AIRE-PRODUKUJÍCÍCH ILC3 BUNĚK V REGULACI TH17 ODPOVĚDI
Mgr. Jan Dobeš, Ph.D., Přírodovědecká fakulta Univerzity Karlovy
„Čím více budeme rozumět jednotlivým procesům imunitního systému a tomu, jak do sebe zapadají, tím lépe jsme schopni efektivněji cílit léčbu v případě, že náš imunitní systém z nějakého důvodu funguje špatně nebo reaguje neadekvátně.“
Jan Dobeš zkoumá s týmem tzv. antigen prezentující buňky (APC). Jde o skupinu bílých krvinek imunitního systému, které rozhodují o aktivaci obrany našeho těla při napadení patogeny, jako jsou bakterie, viry nebo kvasinky. Tyto buňky si můžeme představit jako velitele, kteří rozhodují o správném způsobu obrany proti nepříteli. Rozdávají detailní příkazy dalším buňkám imunitního systému, dodají popis nepřítele a rozhodnou, jakým způsobem proti nepříteli bojovat.
„Snažím se nahlédnout do mysli těchto malých generálů a přijít na to, jakým způsobem instruují své podřízené jednotky a vedou je ke zničení infekce. Dále zjišťuji, co je vede k tomu, že se občas spletou, což může vést k velmi nepříjemným důsledkům,“ přibližuje předmět výzkumu Jan Dobeš z Přírodovědecké fakulty Univerzity Karlovy.
Projekt JUNIOR STAR by měl přinést zjištění, jak fungují rozhodovací mechanismy buněk imunitního systému v případě obrany proti patogenům a jak mohou stejné procesy vést ke vzniku autoimunitních onemocnění.
Mgr. Jan Dobeš, Ph.D.
KINÁZY V BUNĚČNÉM MEMBRÁNOVÉM TRANSPORTU: KLÍČOVÝ CÍL PRO VÝVOJ ÚČINNÝCH LÉČIV
Ing. Zuzana Kadlecová, Ph.D. – Lékařská fakulta Masarykovy univerzity
„Cílem projektu je objasnit roli enzymů při přijímání potravy buňky, což povede k lepšímu porozumění základních fyziologických procesů v těle.“
Endocytóza je aktivní proces, kterým buňka přijímá materiál ze svého vnějšího prostředí, a to včetně látek, které jsou příliš velké na volné projití membránou.
Přesto, že endocytóza hraje zásadní roli ve fyziologických dějích i proto, že díky ní buňka získává látky potřebné pro její vývoj, základní výzkum doposud přinesl překvapivě jen velmi málo poznatků o její molekulární regulaci. Ta spočívá v řízení buněčných procesů na molekulární úrovni, které závisí na interakci a působení biomakromolekul, jež se takto navzájem ovlivňují. Spolupráce mezi biomakromolekulami rozhoduje o jejich přesném umístění v buňce, funkci a vlastnostech, což vede ke správnému a rychlému vykonání daného úkolu.
„Mojí vizí je porozumět roli kináz neboli enzymů v endocytóze a následkům jejich deaktivace. Zaměřuji se na kinázy NAK, které jsou spojovány s řadou patologických procesů, jako je například jedna z nejhůře léčitelných bolestivých stavů – neuropatická bolest nebo virální infekce. Konkrétní molekuly, které zavádějí zbytky kyseliny fosforečné do NAK, tedy NAK fosforylují a ovlivňují jejich funkci, zůstávají velkou neznámou. Očekávám, že naše výsledky objasní konkrétní mechanismy terapeutického využití těchto kináz,“ říká Zuzana Kadlecová, která se svým týmem na Univerzitě v Cambridge přišla s velmi zajímavým zjištěním, že endocytóza je buňkou regulována. Tím vyvrátila dosavadní hypotézu, že tento proces probíhá spontánně. Díky podpoře GA ČR vědkyně naváže na svůj předchozí úspěšný výzkum.
Výzkumný projekt Zuzany Kadlecové přináší nové poznatky, díky kterým lépe porozumíme základním fyziologickým procesům v těle. Výsledky objasní konkrétní mechanismy terapeutického využití těchto kináz, které umožní vývoj nových léčebných postupů nebo protinádorových látek.
Ing. Zuzana Kadlecová, Ph.D.
MAPOVÁNÍ CHEMODIVERZITY PEPŘOVNÍKOVÝCH ROSTLIN POMOCÍ NOVÉ GENERACE PLATFORMY MZMINE
Mgr. Tomáš Pluskal, Ph.D., Ústav organické chemie a biochemie AV ČR
„Pomocí unikátní softwarové platformy MZmine zmapujeme chemickou rozmanitost produktů látkové přeměny metabolismu pepřovníkových rostlin a zjistíme, jakými mechanismy pepřovníky molekuly produkují na úrovni genů a proteinů.“
Projekt JUNIOR STAR Tomáše Pluskala se zaměřuje na vývoj nových výpočetních analytických metod, zejména vylepšení softwarové platformy MZmine, kterou původně vytvořil během doktorského studia. Tato unikátní platforma je hojně využívána vědci po celém světě pro analýzu dat z hmotnostní spektrometrie.
„Mým cílem je rozšířit MZmine o moduly pro identifikaci přírodních látek pomocí nejnovějších technik v oboru. Tyto nástroje budeme poté aplikovat na rostliny z čeledě pepřovníkovitých, která obsahuje asi 3600 druhů a je známá právě rozmanitostí svých metabolitů, což jsou produkty látkové přeměny metabolismu, z nichž mnoho má popsané léčivé účinky. Mezi pepřovníky patří kromě známého koření také např. psychoaktivní kava – pepřovník opojný nebo pippali – pepřovník dlouhý, který se používá v ajurvédské medicíně v Indii,“ představuje výzkum Tomáš Pluskal z Ústavu organické chemie a biochemie Akademie věd České republiky (ÚOCHB), který původně studoval informatiku na Matematicko-fyzikální fakultě Univerzity Karlovy.
Po ukončení studií se Tomáš Pluskal rozhodl díky své zálibě v bojových uměních vycestovat do Japonska. Zde se mu naskytla příležitost věnovat se molekulární biologii ve výzkumném institutu na Okinawě, která ho natolik zaujala, že se se rozhodl této oblasti i nadále věnovat. Po absolvování postdoktorální stáže na Massachussettském technologickém institutu v Cambridge otevřel vlastní laboratoř na ÚOCHB, kde se nyní snaží propojit nejnovější experimentální a výpočetní přístupy k biochemii přírodních látek. Takto získané znalosti se následně dají využít pro cílenou produkci vzácných molekul pomocí biosyntetických nástrojů.
Očekává se, že softwarové platformy a nástroje, které budou vyvinuty v rámci projektu, budou mít širší přínos pro zkoumání i jiných organismů, a to včetně živočichů.
Mgr. Tomáš Pluskal, Ph.D. (foto: Tomáš Belloň /ÚOCHB)
ROLE INSTITUCIONÁLNÍCH FAKTORŮ A INFORMACÍ NA TRZÍCH VEŘEJNÝCH ZAKÁZEK
Bc. Vítězslav Titl, M.Sc., Ph.D., Právnická fakulta Univerzity Karlovy
„Výzkum se zabývá především empirickou analýzou trhu veřejných zakázek, jehož výsledky povedou k vyšší efektivitě nebo úsporám ve veřejném sektoru.“
Výzkumný projekt Vítězslava Titla se zabývá efektivitou trhu veřejných zakázek. Konkrétně se zaměřuje na tři aspekty efektivity veřejných zakázek, které doposud nebyly detailně akademicky zkoumány: zakázky pouze s jedním soutěžícím, vliv cíleného informování firem o veřejných zakázkách a vliv veřejného dohledu a online monitoringu ve veřejných zakázkách.
„V České republice je obrovský podíl zakázek pouze s jedním uchazečem, který je výrazně vyšší než ve vyspělých západních zemích. Ve výzkumu se pokusím zjistit, jestli a jak moc tato situace snižuje efektivitu a jak mohou zadavatelé změnit svoje chování, aby se tento podíl snížil a zvýšila se konkurence ve veřejných zakázkách. Budu hledat důvody, proč se firmy neúčastní veřejných zakázek a jak to změnit.
Dalším tématem, kterým se zabývám, je role veřejnosti při dohledu nad trhem veřejných zakázek v rozvojových zemích. Zajímá mě, jaké podmínky musí být splněny, aby transparentnost trhu veřejných zakázek umožnila veřejnosti efektivně kontrolovat tento trh veřejných zakázek tak, aby se fungování tohoto trhu zlepšilo,“ doplňuje vědec, který se díky podpoře GA ČR vrátil po sedmi letech působení v Belgii a Holandsku zpět do České republiky.
Cílem projektu JUNIOR STAR je přispět k pochopení rozsahu neefektivity na trzích veřejných zakázek a návrh veřejných politik, které povedou k vyšší efektivitě anebo úsporám pro veřejný sektor.
Již sto let fascinuje fyziky i matematiky Einsteinova obecná teorie relativity. Ta je často označována jako nejkrásnější ze všech existujících fyzikálních teorií.
Einsteinova teorie gravitace má významné astrofyzikální důsledky. Například z ní vyplývá existence gravitačních vln, kosmologické expanze vesmíru anebo černých děr ― oblastí prostoru, ve kterých je prostor a čas zakřiven takovým způsobem, že z nich nic nemůže uniknout, dokonce ani světlo. Tato témata jsou již řadu let předmětem zkoumání prof. RNDr. Jiřího Podolského, CSc., DSc., z Matematicko-fyzikální fakulty Univerzity Karlovy. V poslední době se zabývá i přesným řešením rovnic teorie kvadratické gravitace, která přirozeně zobecňuje Einsteinovu teorii. A to bylo i tématem jeho projektu podpořeného Grantovou agenturou České republiky.
Hledání nerotující černé díry
Rovnice kvadratické gravitace jsou z matematického hlediska ještě mnohem složitější než Einsteinovy rovnice. Je velmi obtížné najít jejich přesná, explicitní řešení. „Dosavadní práce mnoha autorů se téměř vždy omezovaly jenom na přibližná, aproximativní řešení, anebo na jejich numerická řešení pomocí počítačů. My se ale dlouhodobě soustředíme na hledání a fyzikální analýzu exaktních řešení gravitačních rovnic, protože jen ty umožnují činit nezpochybnitelné závěry o fyzikálních důsledcích dané teorie,“ říká profesor Jiří Podolský.
Jeho tým se pustil do hledání nejjednodušší nerotující černé díry, která má dokonale sférickou symetrii. To se mu podařilo. „Našli jsme zobecnění slavného Schwarzschildova řešení z roku 1915, což je unikátní a jediné možné sférické vakuové řešení v Einsteinově teorii gravitace. My jsme ale rigorózně dokázali, že v obecnější teorii kvadratické gravitace je třída sférických černých děr mnohem širší,“ vysvětluje prof. Podolský.
„Schwa-Bachova“ černá díra
Prvním klíčovým krokem týmu profesora Podolského bylo přeformulovat složité rovnice do jednodušší podoby pomocí tzv. Bachova tenzoru. Druhým pak bylo použití úplně nového tvaru sférické metriky, který umožňuje Bachův tenzor snadno vyjádřit. Díky tomu se obecně nesmírně komplikované rovnice kvadratické gravitace zredukovaly na dvě krátké diferenciální rovnice pro dvě neznámé funkce jediné proměnné. Ve třetím kroku pak tým tyto rovnice kompletně vyřešil pomocí řad.
„Při tom se ukázalo, že existuje několik různých typů řešení. Tím jsme objevili nejenom zmíněné zobecnění klasické Schwarzschildovy černé díry (nazvali jsme ji Schwarzschildova−Bachova černá díra, familiárně prostě jen Schwa−Bach), ale také několik úplně nových a dosud neznámých tříd sférických řešení ve zcela obecné teorii kvadratické gravitace,“ uvádí profesor Podolský.
Podle výzkumníků může nově objevený typ černé díry pomoci lepšímu pochopení kvadratických korekcí Einsteinovy teorie nebo k testování teorií kvantové gravitace a sjednocených interakcí.
Od teorie k reálné astrofyzice a fyzice vysokých energií
„Naše výsledky jsou ryze teoretického charakteru, spadají do základního výzkumu gravitace. Existují ale jasné styčné body směrem k reálné astrofyzice a kosmologii, která dnes experimentálně studuje černé díry, jimi generované gravitační vlny i zrychlené rozpínání vesmíru způsobené temnou energií. A také k fyzice vysokých energií, částicové fyzice, kvantové teorii pole a superstrun,“ říká Jiří Podolský. Podle něho se jimi nalezená řešení mohou v budoucnu uplatnit i při testování kvantové gravitace a teorií sjednocených interakcí.
„Kvadratická gravitace totiž je ― na rozdíl od Einsteinovy obecné relativity ― renormalizovatelná, neboli v principu je snazší najít její kvantovou verzi a propojit ji s kvantovými poli hmoty,“ dodává profesor Jiří Podolský.
prof. RNDr. Jiří Podolský, CSc., DSc. (*1963)
Vystudoval Matematicko-fyzikální fakultu Univerzity Karlovy, kde od té doby nepřetržitě působí na Ústavu teoretické fyziky. V letech 1990–91 studoval v USA na University of New Mexico, habilitoval se 2001 a v roce 2011 byl na MFF UK jmenován profesorem. Zabývá se relativistickou fyzikou, zejména studiem přesných prostoročasů v Einsteinově obecné teorii relativity a v kvadratické gravitaci, které popisují gravitační vlny, černé díry nebo kosmologické modely. Je autorem či spoluautorem více než 100 původních prací v mezinárodních odborných časopisech a dvou vědeckých monografií. Získal několik ocenění, mj. Cenu Bolzanovy nadace (1998) a Cenu děkana MFF UK za nejlepší monografii (2009) za knihu Exact Space-Times in Einstein’s General Relativity vydanou Cambridge University Press. Přeložil 16 populárně-naučných knih z oblasti teoretické fyziky a astronomie. Působil také jako odborný poradce desetidílného seriálu Génius: Einstein z produkce National Geographic, který se v letech 2016–17 natáčel v Česku.
Holocén neboli doba poledová je období, během kterého do přírodních procesů významnou měrou vstoupil také člověk. Na jeho začátkuse však příroda dynamicky vyvíjela vlivem klimatických změn, které nastaly po skončení poslední doby ledové.
Výměnu druhů formovalo kromě ústupu chladnomilných prvků zejména šíření těch teplomilných z různě vzdálených refugií, tedy míst, kde přečkaly dobu ledovou. To platí pro podstatnou část druhů našeho klimatického pásu. A právě holocennímu vývoji evropské bioty mírného pásu se věnoval projekt financovaný GA ČR prof. RNDr. Michala Horsáka, Ph.D., z brněnské Masarykovy univerzity, podle kterého studium těchto procesů umožňuje pochopit i současnou podobu naší živé přírody, tedy to, nakolik je ovlivněna přírodními procesy a nakolik lidskými vlivy v průběhu posledních osmi tisíc let.
Hledači pokladů
Velkou výzvou každého paleoekologického výzkumu, tedy studia vztahů mezi organismy a prostředím v minulosti, je nalezení vhodného záznamu vývoje. „Jsme na tom podobně jako Indiana Jones, hledači pokladů. Rosettskou desku pro nás představuje nalezení souvislého sledu sedimentů, který se plynule a pravidelně ukládal po dobu posledních 10–15 tisíc let, tedy právě po odeznění doby ledové,“ vysvětluje profesor Horsák. Podle něho pak lze v takovém záznamu číst jako v Alexandrijské knihovně – slovy jsou zachovalé schránky drobných plžů, semena a pyl rostlin, mikroskopické schránky krytenek (jednobuněčných eukaryot), ale také chemické vlastnosti sedimentu, jako jsou změny zastoupení prvků nebo jejich izotopů.
„Pomocí radiokarbonové metody jsme schopni hloubku sedimentu napojit na absolutní časovou osu. V tom může být někdy problém. Metoda je instrumentálně relativně jednoduchá, ale finančně nákladná a také skýtající mnohá úskalí. V určitém typu prostředí může docházet k výraznému zkreslení stáří, datovaného například pomocí ulit plžů, a na to je třeba dát velký pozor. Takovou komplikaci jsme řešili i v jedné z našich studií. Podařilo se nám ji zdárně překonat a výsledek stál za tu námahu,“ poodhaluje Michal Horsák práci na projektu, do kterého se zapojil tým vysoce motivovaných a schopných výzkumníků nejen z Masarykovy univerzity, ale i Univerzity Karlovy a také vědečtí kolegové ze zahraničí.
„Po vědecké stránce mě osobně překvapilo zjištění, jak moc bylo šíření lesních plžů z glaciálních refugií směrem na západ Evropy řízeno klimatem. Dříve jsem se klonil spíše k hypotéze, že současný úbytek lesní malakofauny [vysv. ed.: fauny měkkýšů] směrem na západ je podmíněn zejména holocenním působením člověka,“ říká profesor Horsák.
Poznání minulosti je klíčem k představě o budoucnosti
Tříletý projekt vědeckého týmu pod vedením profesora Horsáka přinesl okolo 35 vědeckých publikací, mnohé vyšly v prestižních oborových časopisech. Každá z nich má originální a zobecnitelné výsledky. Hlavní praktické uplatnění najdou zejména v ochraně přírody. „Naše výsledky jsou využitelné pro odhady dopadu budoucích klimatických změn i lidské činnosti na biodiverzitu a dynamiku ekosystémů,“ uvádí profesor Michal Horsák.
Jedna ze studií jeho týmu odhalila historický původ reliktních společenstev celoevropsky silně ohrožených travertinových mokřadů. Ty se za posledních tisíc let utvářely pod vlivem lidského hospodaření mnohem víc, než se myslelo. To jim vtisklo určitou paměť.
„Naše výsledky dokládají nutnost pravidelného ochranářského managementu, jako prostředku pro budoucí udržení tohoto přírodního, ale i kulturního dědictví.“
Nedocenitelnou hodnotu má právě ohromný archiv informací ukrytých v sedimentu těchto lokalit. „My jsme do něj sice nahlédli, ale rozvíjející se metody v budoucnu pravděpodobně umožní přečtení kvalitativně nových informací. Zničení takových archivů by byla nevratná ztráta,“ dodává prof. RNDr. Michal Horsák, Ph.D.
Michal Horsák (*1975) vystudoval zoologii na Přírodovědecké fakultě Masarykovy univerzity v Brně. V Ústavu botaniky a zoologie téže fakulty se věnuje zejména výzkumu kontinentálních měkkýšů mírného pásu, ekologii společenstev a kvartérní paleoekologii.
Abychom poskytli co nejlepší služby, používáme k ukládání a/nebo přístupu k informacím o zařízení, technologie jako jsou soubory cookies. Souhlas s těmito technologiemi nám umožní zpracovávat údaje, jako je chování při procházení nebo jedinečná ID na tomto webu. Nesouhlas nebo odvolání souhlasu může nepříznivě ovlivnit určité vlastnosti a funkce.
Funkční
Vždy aktivní
Technické uložení nebo přístup je nezbytně nutný pro legitimní účel umožnění použití konkrétní služby, kterou si odběratel nebo uživatel výslovně vyžádal, nebo pouze za účelem provedení přenosu sdělení prostřednictvím sítě elektronických komunikací.
Předvolby
Technické uložení nebo přístup je nezbytný pro legitimní účel ukládání preferencí, které nejsou požadovány odběratelem nebo uživatelem.
Statistiky
Technické uložení nebo přístup, který se používá výhradně pro statistické účely.Technické uložení nebo přístup, který se používá výhradně pro anonymní statistické účely. Bez předvolání, dobrovolného plnění ze strany vašeho Poskytovatele internetových služeb nebo dalších záznamů od třetí strany nelze informace, uložené nebo získané pouze pro tento účel, obvykle použít k vaší identifikaci.
Marketing
Technické uložení nebo přístup je nutný k vytvoření uživatelských profilů za účelem zasílání reklamy nebo sledování uživatele na webových stránkách nebo několika webových stránkách pro podobné marketingové účely.