Nové mezinárodní projekty s USA, Německem a Rakouskem

Grantová agentura České republiky (GA ČR) podpoří ve spolupráci s partnerskými agenturami čtyři nové mezinárodní projekty, a to po jednom projektu s americkou National Science Foundation (NSF) a německou Deutsche Forschungsgemeinschaft (DFG) a dva s rakouskou Fonds zur Förderung der wissenschaftlichen Forschung (FWF).

Všechny projekty budou zahájeny ještě v letošním roce s dobou řešení tři roky. Projekty byly hodnoceny formou Lead Agency, kdy jedna z agentur provede hodnocení návrhu projektu, jehož výsledky jsou následně převzaty partnerskou agenturou. GA ČR figurovala u těchto nově podpořených projektů jako partnerská agentura, která převzala výsledky hodnocení. Každá agentura financuje náklady vědců ze své země.

Projekt financovaný DFG a GA ČR

Reg. č. Navrhovatel Název projektu Uchazeč Doba řešení
24-13597L Ing. Petr Štěpánek, Ph.D. Prolomení limitu přesnosti systému DORIS způsobeném hodinami Výzkumný ústav geodetický, topografický a kartografický, v.v.i. 3 roky

 

Projekty financované FWF a GA ČR

Reg. č. Navrhovatel Název projektu Uchazeč Doba řešení
24-13337L doc. RNDr. Lukáš Chrpa, Ph.D. Revertování efektů akcí: teorie a praxe České vysoké učení technické v Praze, Český institut informatiky, robotiky a kybernetiky 3 roky
24-14624L prof. Ing. Ivan Křupka, Ph.D. Tření ve valivých kontaktech za přítomnosti suspenzí Vysoké učení technické v Brně, Fakulta strojního inženýrství 3 roky

 

Projekt financovaný NSF a GA ČR

Reg. č. Navrhovatel Název projektu Uchazeč Doba řešení
24-14395L Evgeny Gelfer Koherentní záření elektronů při interakci s intenzivními laserovými pulzy Extreme Light Infrastructure ERIC
(ELI ERIC)
3 roky

 

S FWF a DFG je GA ČR propojena také díky iniciativě Weave, jejímž cílem je ustanovit partnerství mezi 12 evropskými agenturami podporujícími základní výzkum. V rámci této iniciativy lze podávat také trilaterální projekty.

 

 

Nové poznatky o zlomech DNA a jejich opravě

Během procesu buněčné meiózy, která je nezbytná pro sexuální rozmnožování, dochází ke vzniku zlomů DNA a jejich následné opravě. PARG-1 je klíčový regulátor tohoto procesu, který hraje roli při udržování integrity genomu, a jeho studium může přinést relevantní poznatky pro lidské zdraví. Díky výzkumu podpořenému Grantovou agenturou ČR (GA ČR) zkoumal Nicola Silva z Masarykovy univerzity složitosti dynamiky oprav DNA v zárodečné linii.

Lidské buňky se skládají z 46 chromozomů, z nichž polovina je přijata od matky a druhá polovina od otce. Všechny sexuálně se rozmnožující organismy prochází procesem meiózy, při které se počet chromozomů v nově vzniklých pohlavních buňkách, spermiích a vajíčkách, sníží na polovinu. Po oplodnění se genetická informace nesená vajíčkem a spermií spojí do zygoty, čímž dojde k obnovení původního počtu chromozomů.

V průběhu meiózy existuje několik mechanismů, které zajišťují, že obě gamety, tedy spermie a vajíčko, obdrží správný počet chromozomů. Pokud je proces chybný, vede k tvorbě dysfunkčních gamet, které mohou vést k přenosu dědičných mutací na potomky.

Jedním z klíčových aspektů meiózy je výměna částí DNA u každého páru mateřských a otcovských homologních chromozomů v procesu nazývaném homologní rekombinace. V procesu zvaném crossover dojde ke vzniku takzvaných dvouřetězcových zlomů DNA (DSB z anglického double-strand breaks), mateřské a otcovské chromozomy se spojí a vymění si navzájem odpovídající části DNA sekvence. Díky crossoveru dochází přeuspořádání genetické informace v dceřiných buňkách a vzniku genetické rozmanitosti.

Počet zlomů vzniklých během meiózy v pohlavních buňkách je ovšem výrazně vyšší než počet crossoverů, což naznačuje, že opravné systémy, které využívají homologní sekvence k obnovení integrity genomu, se také podílejí na opravě zlomů, které ke crossoveru nevedou.

Přísná regulace počtu dvouřetězcových zlomů DNA

Přerušení řetězce DNA představuje nebezpečí z hlediska zachování integrity genomu, a proto musí být jejich počet, umístění i aktivace DNA opravných systémů, pečlivě regulovány. Vědci již identifikovali řadu genů, které jsou zodpovědné za procesy opravy DNA. Mutace v jakémkoliv z těchto opravných genů mohou u lidí výrazně zvýšit riziko vzniku nádorových onemocnění. Příkladem mohou být geny BRCA1/BRCA2, jejichž mutace je spojována se zvýšeným rizikem rakoviny prsu a vaječníků nebo Fanconiho anémií.

Jednou z cest, jakými je možné kontrolovat opravy DNA, je připojení chemických skupin k proteinu po jeho syntéze nebo odstranění signálních peptidů po buněčné lokalizaci v procesu nazývaném post-translační modifikace. Jednou z hlavních změn, ke kterým dochází v odpovědi na poškození DNA, je poly-ADP-ribosylace (PARylace), proces, při kterém jsou na substráty přidány jednotky ADP-ribózy, což vede k regulaci jejich aktivity. Ačkoli byla PARylace rozsáhle studována na výzkumných modelech ex vivo, její studium v živém savčím organismu je obtížné kvůli embryonální letalitě spojené s mutací, která vede k úplné ztrátě funkce u jejích „zapisovatelů“, PARP1/2. Tyto enzymy jsou zodpovědné za syntézu řetězců ADP-ribózy v reakci na genotoxický stres. In vivo studium také komplikuje enzym „vymazávač“ PARG, který působí proti aktivitě PARP1/2 tím, že rozkládá řetězce ADP-ribózy.

Hlístice Caenorhabditis elegans, která je často využívaná jako modelový organismus pro studium stability genomu, poskytuje obrovskou výhodu ve srovnání s jinými modelovými organismy, protože toleruje mutace, které vedou k zániku funkčnosti genů PARP1/2 i PARG, což umožňuje studium jejich funkce v zárodečné linii.

Nicola Silva z Biologického ústavu Lékařské fakulty Masarykovy univerzity díky projektu financovanému GA ČR provedl podrobnou in vivo analýzu rolí, kterou tyto proteiny plní, což vedlo k identifikaci jejich klíčových funkcí, zejména PARG-1 (homolog savčího PARG u C. elegans) během meiózy.

Díky využití technik úprav genomu (CRISPR) byli výzkumníci schopni lokalizovat pozici PARG-1 při vývoji vajíček. Jejich analýza odhalila, že PARG-1 je nedílnou součástí důležité meiotické proteinové struktury, která udržuje chromozomy pevně spojené během meiózy a nazývá se Synaptonemální komplex (SC), viz Obrázek 1.

Image 1: Oocytes at the indicated stage stained for different subunits of the SC and PARG-1 (GFP). From Janisiw et al.; Nature Communications, 2020.

Obrázek 1. Vajíčka v uvedeném stadiu obarvené na různé podjednotky SC a PARG-1 (GFP). Janisiw a kol.; Nature Communications, 2020.

Výzkumníci si také všimli, že PARG-1 vytváří proteinové komplexy s proteiny zapojenými do indukce a zpracování meiotických dvouvláknových zlomů také u jiných druhů. Díky studiu C. elegans zjistili, že je PARG-1 je důležitý pro regulaci počtu zlomů DNA během vývoje zárodečných buněk a napomáhá jejich přesné opravě pomocí homologní rekombinace, viz Obrázek 2.

Image 2: Oocytes stained for different SC subunits and the crossover sites in mutants with reduced DSBs, after irradiation. From Janisiw et al.; Nature Communications, 2020.

Obrázek 2. Vajíčka obarvená na různé podjednotky SC a místa crossoverů u mutantů se sníženým počtem DSB po ozáření.; Janisiw a kol.; Nature Communications, 2020.

Vědci také zjistili, že PARG-1 hraje díky schopnost lokalizovat se podél chromozomů klíčovou roli při indukci dvouvláknových zlomů a homologní rekombinaci, což naznačuje, že nejenže vykonává enzymatické funkce, ale je důležitý i ze strukturního hlediska.

Výzkumníky také zajímala proteinová struktura, kterou PARG-1 a další proteiny vytváří v zárodečných buňkách. Tato analýza vedla k identifikaci fyzické a funkční interakce s komplexem BRC-1-BRD-1, který je u člověka homologem BRCA1-BARD1. Tyto proteiny hrají hlavní role při regulaci stability genomu v mitotických buňkách, avšak jejich funkce během meiózy je složitější. Výzkum odhalil, že současná odstranění PARG-1 a BRC-1 způsobí zvýšenou neplodnost v důsledku rozsáhlé nestability genomu. Zejména výzkumníci pozorovali, že mnoho DNA poškození vzniklých během meiózy nebylo správně opraveno, což vedlo k vytvoření fúzí chromozomů a sníženému množství rekombinací.

Při odstranění různých opravných drah DNA spolu s BRC-1/PARG-1 pozorovali výzkumníci zhoršující se integritu genomu způsobenou nedostatkem polymerázy POLQ-1, o které víme, že hraje roli při realizaci důležité opravné dráhy DNA nazývané alternative non-homologous end joining.

Image 3: Oocytes of the indicated genotype and stage stained for a marker of single-stranded DNA, highlighting presence of unrepaired damage in absence of BRC-1-PARG-1. From Trivedi et al.; Nucleic Acids Research, 2022.

Obrázek 3. Vajíčka uvedeného genotypu a stádia obarvené na marker jednořetězcové DNA, který zvýrazňuje přítomnost neopraveného poškození v nepřítomnosti BRC-1-PARG-1.; Trivedi a kol.; Nucleic Acids Research, 2022.

Výzkum Nicola Silvy byl prvním in vivo důkazem, že při narušené funkci BRC-1/BRCA1 je aktivita PARG-1/PARG nezbytná pro zachování integrity genomu v gametách. Navíc jeho zjištění o letalitě vyvolané současným zrušením funkce POLQ-BRCA1 má obrovský význam pro léčbu rakoviny a je v souladu s nedávnými výzkumy, které u lidí vykazují slibné výsledky při cílení na nádorové buňky pomocí inhibitorů POLQ a mohly by sloužit jako nová cesta ke zlepšení léčebných výsledků u nádorů s mutacemi BRCA1. Jeho práce zdůrazňuje klíčovou roli, kterou modelové systémy hrají při analýze konzervovaných drah u jednodušších organismů.

Zdokonalení elektrotechnických zařízení díky grafenu

Před pouhými dvaceti lety se světu otevřela brána do fascinujícího světa grafenu – látky s jedinečnými fyzikálními vlastnostmi. Mezi ty, kdo se ponořili do jeho zkoumání, patří i Martin Rejhon z Matematicko-fyzikální fakulty Univerzity Karlovy. Ve svém JUNIOR STAR projektu se zaměřuje na růst tří grafenových vrstev na sobě s cílem zajistit jejich využitelnost ve vývoji elektronických a optoelektronických zařízení.

Cesta ke grafenu

Grafen je speciální forma uhlíku, která má na výšku pouze jeden atom. Je tak 2D strukturou, která navíc nabízí ojedinělé fyzikální vlastnosti. Jedná se o materiál objevený poměrně nedávno, konkrétně v roce 2004, a v roce 2010 byla za něj udělena Nobelova cena. V tomto roce řešitel projektu JUNIOR STAR Martin Rejhon teprve nastupoval do bakalářského studia.

Výzkumu grafenu se věnuje od začátku doktorského studia. „Během doktorského studia jsem získal univerzitní grant na zkoumání světelných vlastností spojení karbidu křemíku [pozn. red.: sloučenina tvořená křemíkem a uhlíkem], označovaného jako SiC z anglického silicon carbide, a grafenu. Díky grafenu jsem se také dostal na stáž a později na postdoktorandský pobyt na New York University, kde jsem se zabýval mechanickými vlastnostmi 2D materiálů a jejich strukturálními změnami vyvolanými aplikovaným tlakem,“ popisuje doktor Rejhon svou cestu k výzkumu grafenu.

Kontrola atomárních vrstev grafenu

Při vysokých teplotách, dosahujících až 1700 °C, dochází k porušení kovalentních vazeb mezikřemíkem a uhlíkem karbidu křemíku, kdy křemík odlétá z povrchu, zatímco zbývající uhlík se začíná formovat do hexagonální struktury, tzv. včelí plástve, a utváří 2D materiál zvaný grafen.

V rámci svého projektu JUNIOR STAR se doktor Rejhon zaměřuje na přípravu více vrstev grafenu na sobě. „Abychom byli schopni kontrolovat uspořádání více grafenových vrstev, bude potřeba správně nastavit růstové podmínky, jako je teplota, čas, tlak a další. Na obrázku 1 je vidět práce s naší současnou růstovou aparaturou. V dolní části obrázku je patrný jasně bílý váleček, kde se ohřívá substrát SiC na vysoké teploty,“ vysvětluje svůj nelehký úkol řešitel projektu.

Grafen - růstová aparatura
Obrázek 1 – Růstová aparatura grafenu

ABC uspořádání

Způsob, jakým jsou na sebe jednotlivé atomární vrstvy látek skládány, ovlivňuje jejich vlastnosti. Jeden způsob složení atomárních vrstev může z látky udělat izolant, zatímco jiný z ní vytvoří supravodič. Z tohoto důvodu je důležité mít nad způsobem uspořádání těchto atomárních vrstev kontrolu. „Náš výzkum bude primárně soustředěn na růst tří atomárních uhlíkových vrstev v ABC uspořádání, které má jedinečné vlastnosti vhodné pro aplikace v elektronice a optoelektronice. ABC uspořádání bohužel není nejběžnějším a v přírodě se více vyskytuje uhlík v ABA uspořádání nebo v úplně náhodném uspořádání,“ představuje hlavní oblast soustředění Martin Rejhon.

Součástí výzkumu bude příprava vzorků v ABC uspořádání, které vědci podrobně charakterizují a určí nejvhodnější parametry pro přípravu a složení grafenových vrstev. „Díky získanému grantu JUNIOR STAR pořídíme speciální mikroskop. Jeho princip si můžete zjednodušeně představit jako gramofon, kdy jehla jezdí po povrchu a zaznamenává výšku. Toto zařízení nám dovolí lokálně zkoumat elektrické, mechanické a další vlastnosti na škálách jednotlivých atomů až po mikrometry. Jakmile zvládneme růstovou etapu, pustíme se do vývoje elektronických a optoelektronických zařízení na ABC grafenu,“ dodává řešitel projektu.

Nové možnosti v elektronice a optoelektronice

Výzkumný tým si od projektu slibuje objevení nových možností využití grafenu v elektronice a optoelektronice. „Chceme například ukázat jeho možné využití jako detektoru dalekého infračerveného záření a záření v terahertzové oblasti. Tyto oblasti jsou v současnosti lákavé pro jejich využití v medicíně nebo bezpečnostních či komunikačních aplikacích,“ zmiňuje doktor Rejhon. Jedním z možných praktických využití výsledků bude nahrazení běžně používaného rentgenového záření, které je pro organismus škodlivé.

Mezinárodní tým z Matematicko-fyzikální fakulty Univerzity Karlovy na výzkumu spolupracuje s americkými New York University a Sandia National Laboratories nebo italským institutem Scuola Internazionale Superiore di Studi Avanzati.

RNDr. Martin Rejhon, Ph.D.
RNDr. Martin Rejhon, Ph.D.

 

JUNIOR STAR

Granty JUNIOR STAR jsou určeny pro excelentní začínající vědce, kteří získali titul Ph.D. před méně než 8 lety a kteří již publikovali v prestižních mezinárodních časopisech a mají významnou zahraniční zkušenost. Díky pětiletému financování s možností čerpat až 25 milionů Kč umožňují granty JUNIOR STAR vědecké osamostatnění a případné založení vlastní výzkumné skupiny. Na podporu dosáhne pouze zlomek podaných projektů. Pro rok 2024 bylo podpořeno pouze 17 z celkových 175 návrhů projektů.

SOUVISEJÍCÍ ČLÁNKY

Termín pro podání chorvatsko-českých projektů o týden prodloužen

Návrhy projektů je nově možné posílat do výzvy pro podávání chorvatsko-českých projektů, vyhlášené 28. 3. 2024 společně s chorvatskou agenturou Hrvatska zaklada za znanost (HRZZ) v rámci iniciativy Weave, do 24. 5. 2024 (pro část projektu podávanou GA ČR) a do 17. 5. 2024 (pro část projektu podávanou HRZZ).

SOUVISEJÍCÍ ČLÁNKY

Rozbor krve pomůže včas zjistit nádor

Zkoumání lipidů, v tomto případě zejména tuků v lidském těle, vedlo profesora Michala Holčapka a jeho kolegy k vytvoření konceptu včasného zjišťování hned několika různých typů rakovinných nádorů. Tedy jejich rozpoznání v době, kdy se dají úspěšněji léčit. Jejich výzkumný projekt byl nominován na Cenu předsedy Grantové agentury ČR a vznikla i firma, která chce jeho výsledky uvést do praxe.

Michal Holčapek je profesorem analytické chemie na Fakultě chemicko-technologické Univerzity Pardubice. Už více než dvacet let se zabývá výzkumem lipidů. Lipidy nejsou jen rostlinné oleje nebo živočišné tuky, ale také celá řada látek, které plní důležité role v lidském organismu, tvoří například materiál pro stavbu buněčných membrán, přenášejí informace uvnitř buněk nebo v mezibuněčné komunikaci.

„Z pohledu vědy jsou lipidy moc zajímavé sloučeniny. A čím víc jsem je poznával a psal o nich vědecké práce, tím víc jsem přemýšlel, jak tohle poznání využít ještě jinak, nejlépe v medicíně,“ popisuje profesor Holčapek.

V roce 2010 byl na dvou konferencích ve Spojených státech a přelétal mezi americkými městy Phoenix a Salt Lake City. „V letadle jsem spíš z nudy vzal do ruky časopis letecké společnosti, kde byl docela zajímavý populární článek o nádorech. A mně to najednou sepnulo – vždyť lipidy přece tvoří membrány i v nádorových buňkách. Bylo by výborné využít naše znalosti k tomu, aby se dala zjišťovat rakovina!“ vzpomíná Michal Holčapek.

Stavební materiál rakovinných buněk

Nádorové buňky jsou nebezpečné zejména tím, že se nekontrolovaně a rychle množí. To ovšem znamená, že potřebují hodně „stavebního materiálu“, tedy i lipidů, které nutně potřebují pro stavbu membrán. Už dřívější studie ukázaly, že lipidy v nádorových buňkách mají trochu jiné složení než v buňkách normálních.

Změny koncentrací lipidů se neprojevují pouze v buňkách a nádorových tkáních, ale lze je detekovat i v tělních tekutinách, jako například v krvi nebo v moči. „Řekl jsem si tehdy: Pokud tyto ,rakovinné‘ lipidy zjistíme v tělních tekutinách, které se lidem dají velice snadno odebrat, můžeme tak určit, že tito lidé jsou nemocní,“ vysvětluje Michal Holčapek.

Společně s kolegy z Pardubic se spojili s vědci a lékaři z Univerzity Palackého v Olomouci a tamní Fakultní nemocnice, z Masarykova onkologického ústavu v Brně a dalších nemocnic. Získávali od nich biologické vzorky od nemocných pacientů i zdravých osob a určovali, čím se lipidy v nich liší.

Tři nemoci na mušce

„V našem zatím posledním výzkumném projektu, který financovala Grantová agentura ČR, jsme se zaměřili na nádory ledvin, a spíše pro srovnání jsme tam přidali i rakovinu slinivky břišní a plic. Ukázalo se však, že nejlíp se nám daří ze vzorků krve identifikovat nádory slinivky. Takový test na světě neexistuje,“ zdůrazňuje Michal Holčapek. Mezi řadou odborných publikací, které výzkumníci připravili, je právě článek o určování tohoto nádoru zlatým hřebem – publikoval jej prestižní vědecký časopis Nature Communications.

Nádory slinivky přitom patří mezi nejzákeřnější. Obvykle se totiž dají zjistit, až když jsou v příliš pokročilém stádiu a léčí se obtížně. Jejich včasná diagnostika je tedy pro nemocného životně důležitá.

Patenty i univerzitní firma

„Naše analytické postupy jsou velmi přesné, využíváme špičkové přístroje pro hmotnostní spektrometrii, kapalinovou chromatografii i superkritickou fluidní chromatografii. V případě lipidů zkoumáme koncentrace několika set různých molekul,“ konstatuje profesor Holčapek. „Jeden údaj by nám k ničemu nestačil, ale právě kombinace takového množství dat nám umožňuje velmi dobře určit, která z vyšetřovaných osob má nádorové onemocnění.“

Výzkumníci vytvořili vlastní software pro vyhodnocování naměřených výsledků. Získali už evropský patent na postup pro určování karcinomu slinivky, další evropský patent, pro diagnostiku nádorů ledvin, je zatím ve schvalovacím řízení. Tytéž patenty přihlásili i v USA, Japonsku a Singapuru.

Loni v květnu Univerzita Pardubice a pardubická společnost FONS založily společnou firmu LipiDiCa, která by měla převést tuto diagnostiku do klinické praxe.

„Naší představou je, že metoda by se dala používat pro screening rizikových skupin populace. Tedy lidí, v jejichž rodině se nádory opakovaně objevují, nebo kteří mají genetické mutace, jež riziko vzniku nádoru zvyšují,“ říká Michal Holčapek. „Další aplikace by měla být k dispozici pro lidi, kteří mají příznaky, jež by mohly být způsobeny nádorovým onemocněním.“

Celý test by podle předběžných propočtů měl stát asi dva a půl tisíce korun – od nabrání krve, přes zpracování vzorku až po vyhodnocení.

michal_holcapek

Prof. Ing. Michal Holčapek, Ph.D., pracuje na Fakultě chemicko-technologické Univerzity Pardubice, je analytickým chemikem a dvacet let se zabývá výzkumem lipidů. Vystudoval Univerzitu Pardubice, kde v roce 1999 získal doktorát, v roce 2009 se stal docentem a v roce 2013 profesorem. Absolvoval několik krátkých odborných stáží ve Francii, USA a Norsku. Je viceprezidentem Mezinárodní lipidomické společnosti.

SOUVISEJÍCÍ ČLÁNKY

Jak může stres a další vlivy v těhotenství ovlivnit mozek dítěte?

Stres, úzkost a deprese během těhotenství mohou mít dlouhodobé důsledky na vývoj dítěte a mohou zapříčinit emoční a behaviorální problémy. Dosud však není dobře známo, jakými mechanismy k přenosu mezi matkou a plodem dochází. Ambiciózní projekt JUNIOR STAR Kláry Marečkové z výzkumného centra CEITEC si dal za cíl odhalení těchto mechanismů a přispění k vysvětlení vztahu mezi duševním zdravím matky během těhotenství a mozkem a chováním dítěte.

Cesta k tématu

K tématu vlivu zdraví matky během těhotenství na vývoj mozku a chování dítěte se řešitelka projektu Klára Marečková poprvé dostala v rámci svého doktorského studia v Anglii.

„V rámci svého Ph.D. studia mě velmi zaujala studie dvouvaječných dvojčat, která prokázala, že ti, co byli v děloze s chlapcem – nehledě na to, jestli oni samotní byli dívky či chlapci – měli v důsledku vyšší hladiny prenatálních androgenů (mužských pohlavních hormonů) větší mozek než ti, co byli v děloze s dívkou. Androgeny, které produkoval plod chlapce, se difuzí dostaly ke druhému dvojčeti a zásadně ovlivnily vývoj jeho mozku směrem k maskulinitě,“ objasňuje řešitelka, proč ji téma poprvé oslovilo.

Dále, již jako postdoktorandka na Harvardu, studovala vliv několika zánětlivých markerů (látek v krvi, které jsou obvykle známkou přítomnosti zánětu) u matek během těhotenství na funkci mozku jejich potomků. Tyto a další výzkumy a jejich výsledky přiměly řešitelku se oblasti mechanismů prenatálního programování věnovat na svém pracovišti naplno a následně úspěšně žádat o grant JUNIOR STAR od Grantové agentury ČR.

Pochopení vývojových mechanismů

Cílem podpořeného projektu, jak již bylo řečeno, je pochopit mechanismy, které v těhotenství ovlivňují vývoj mozku a které mají následně vliv na chování dítěte. K odhalení a pochopení těchto mechanismů je potřeba obrovského množství dat.

V rámci projektu tak probíhá pravidelný sběr biologických vzorků nejen dětí, ale i maminek v průběhu těhotenství. Děti také absolvují psychologické vyšetření kognitivních schopností a vyšetření magnetickou rezonancí.

„Budeme například zkoumat souvislost biologického věku matky během těhotenství, biologického věku děťátka po narození a biologického věku dítěte v 6 letech na strukturu a funkci mozku těchto šestiletých dětí. Zajímá nás také, jak prostředí, jako například socioekonomický status, sociální podpora, zdravotní stav před otěhotněním nebo vystavení toxickým látkám může tyto vztahy zesilovat, nebo naopak zmírňovat,“ uvádí hlavní výzkumné otázky projektu Klára Marečková.

Přenos výsledků do praxe

Pokud se v rámci projektu prokáže vliv konkrétních zánětlivých markerů nebo jejich kombinací během těhotenství na vývoj mozku dítěte, mohly by se tyto hladiny markerů v budoucnu u všech těhotných monitorovat a regulovat pomocí protizánětlivých diet nebo léčby tak, aby k neoptimálnímu vývoji mozku a vývojovým poruchám u dětí nedocházelo. Pokud by se prokázalo, že existují nějaké enviromentální vlivy, které zánětlivé markery a biologické stárnutí ovlivňují, například jejich vliv zesilují nebo naopak mírní, mohlo by se cílit i na ně. Takovéto cílené intervence by pak zamezily mezigeneračnímu přenosu neurovývojových a duševních poruch.

Vesmírné vyšetření

Kvůli obavám z hladkého průběhu vyšetření dětí magnetickou rezonancí (MR), výzkumný tým upravil a nadále upravuje prostředí výzkumného institutu CEITEC. „Vyšetření magnetickou rezonancí bude pro děti motivované cestou do vesmíru. U MR skeneru tedy už máme velkou raketu, na stěnách obrázky planet a malých astronautů. Děti si také budou moct obléct do skafandru plyšového medvídka, kterého si pak sami zkusí vyvézt na lehátku do skeneru, než do něj půjdou sami. Během MR vyšetření samotného jim pak budeme na obrazovku pouštět kreslenou pohádku a po vyšetření na ně bude čekat odměna,“ vysvětluje řešitelka projektu JUNIOR STAR a dodává, že prvním pilotním účastníkem studie byla její sedmiletá dcera, která byla z vyšetření nadšená.

 


Hlavní řešitelka projektu Klára Marečková, Ph.D., M.Sc.
Hlavní řešitelka projektu Klára Marečková, Ph.D., M.Sc.

 

JUNIOR STAR

Granty JUNIOR STAR jsou určeny pro excelentní začínající vědce, kteří získali titul Ph.D. před méně než 8 lety a kteří již publikovali v prestižních mezinárodních časopisech a absolvovali významnou zahraniční stáž. Díky pětiletému projektu s možností čerpat až 25 milionů Kč umožňují granty JUNIOR STAR vědecké osamostatnění a případné založení vlastní výzkumné skupiny. Na podporu dosáhne pouze zlomek podaných projektů. Pro rok 2024 bylo podpořeno 17 z celkových 175 návrhů projektů.

 

SOUVISEJÍCÍ ČLÁNKY