„Heuslerovy slitiny vykazující jev magnetické tvarové paměti a příbuzné jevy“. Tak se jmenoval projekt Grantové agentury České republiky, na kterém v letech 2011–2015 pracoval tým pod vedením doktora Olega Heczka z Fyzikálního ústavu Akademie věd. Dosažené výsledky projektu byly hodnoceny jako mimořádně úspěšné. Publikační výstup představuje 30 kvalitních, často hojně citovaných publikací, a to většinou v periodikách s vysokým impakt faktorem. Zahrnuje také 12 příspěvků do sborníků významných mezinárodních konferencí, na kterých byly v deseti případech prezentovány přímo přednáškou řešitele. Výsledkem projektu je i vznik odborného týmu, který je respektován mezinárodní komunitou materiálové vědy.
Hlavním přínosem projektu Heuslerovy slitiny vykazující jev magnetické tvarové paměti a příbuzné jevy je objev dvou typů hranic dvojčatění a jejich výrazně odlišného fyzikálního chování. Slovo objev je v tomto případě zcela namístě, protože se nejedná o pouhou klasifikaci dvou různých typů, ale o přímé pozorování zvláště hranic s extrémní pohyblivostí. „Toto zjištění je důležité především proto, že pohyb těchto hranic indukovaný magnetickým polem, je základem jevu magnetické tvarové paměti. Objev přináší posun v porozumění tohoto jevu a obecně elastickému chování fáze, která se označuje jako martenzit. Ukazuje se tak možnost připravit materiály s extrémně pohyblivými hranicemi dvojčatění, navíc jen slabě závislými na teplotě. To otevírá nové možnosti pro budoucí aplikace takových materiálů,“ říká Oleg Heczko.
Dalším významným výsledkem projektu jsou nové informace týkající se vývoje elastických vlastností, které podmiňují existenci bezdifúzní martenzitické transformace v různých materiálech. Ukázalo se, že běžně přijímaná podmínka anomálního měknutí elastických smykových modulů není podmínkou úplně nutnou. Je zřejmé, že výsledky řešení projektu jsou přínosné nejen pro obor technických věd, ale mají i významný přesah do fyziky, tedy do věd o neživé přírodě.
U optického mikroskopu s modelem Heuslerovy slitiny, Oleg Heczko a studentka gymnázia v Zďáru nad Sázavou navštěvující FZÚ v rámci programu Otevřená věda.
Náhodné setkání ve vlaku „Moje cesta k tématu magnetické tvarové paměti začala vlastně náhodou, a to již za socialismu. Sestra tehdy náhodou ve vlaku potkala Fina, který ztratil dokument potřebný pro odjezd z České republiky. Než mu vystavili nový, bydlel tři týdny u nás doma. Právě v této době vznikla moje vazba na Finsko, kam jsem se následně dostal po roce 1992 po ukončení základního studia na MFF UK. Kromě toho, že jsem si tam našel manželku, tak po různých dalších peripetiích, doktorátu na MFF a postdoktorskémpobytu v Manchestru ve Spojeném Království, jsem se dostal ke Kari Ullakkovi, relativně mladému výzkumníkovi na Helsinské technické universitě. Ten v rámci svého pobytu na MIT v USA objevil jev magnetické tvarové paměti. Zjistil, že magnetické pole může způsobovat reorientace krystalové struktury. Nikdo předtím netušil, že je to možné. Je to nové paradigma deformace v magnetickém poli. Ve fyzice jde o nový obor, nebylo to jen vylepšení něčeho stávajícího,“ vysvětluje Oleg Heczko.
Co je magnetická tvarová paměť? „Když se to snažím přiblížit laikovi, říkám, představte si, že máte nárazník z Heuslerovy slitiny. Ten zdeformujete tím, že se třeba nešťastně opřete o patník. On se celý zdeformuje, a jak ho pak opravíte? Přijedete do servisu, tam aplikují magnetické pole a nárazník se narovná do původního stavu a vy můžete jet pryč. Jako by si pamatoval ten původní tvar,“ doplňuje Oleg Heczko.
U elektronového mikroskopu v usilí identifikovat hranice dvojčatění
Heuslerovy slitiny
Abychom byli úplní, je důležité ještě dovysvětlit, co jsou Heuslerovy slitiny, protože ty jsou s pojmem magnetické tvarové paměti významně spojeny. Jejich zajímavost spočívá především v tom, že ačkoliv dle původní definice neobsahují jedinou feromagnetickou látku, jako celek vykazují feromagnetické vlastnosti. Tato rozsáhlá skupina čítající asi 1500 látek se dále dělí na dvě podskupiny. V prvním případě hovoříme o úplných Heuslerových slitinách, ve druhém o polovičních Heuslerových slitinách. Ale jen některé z nich vykazují takzvanou martensitickou transformaci a dvojčatění, které jsou základní podmínkou pro jev magnetické tvarové paměti.
Jak je možné využít magnetickou tvarovou paměť v praxi?
Hlavní idea využití jevu magnetické tvarové paměti je v tom, že materiál nahradí stroj. „Představte si šicí stroj. Je tam jehla, která se pohybuje, jsou tam různé převodníky, spousta koleček a převodů, které se různě mění atd. Místo všech těchto převodů a součástek tam bude jeden kus toho našeho materiálu a jedna cívka a materiál se bude zkracovat a prodlužovat podle frekvence proudu, který se do cívky pustí, a tím pohybovat jehlou dle našeho přání,“ popisuje Oleg Heczko.
Soubor hranic dvojčatění typu II, vertikální linie. Optický mikroskop, Nomarského kontrast, velikost strany obrázku přibližně 0.2mm.
Největší potenciál je v medicíně. Magnetické pole dokáže působit přes překážku, například skrze kůži či organickou membránu apod. Abychom nemuseli do lidského dělat otvory, umisťovat dráty apod., stačí voperovat kus nějakého vhodného materiálu a zvenku jím manipulovat pomocí působení magnetického pole. První aplikace, která je tomu asi nejblíž, jsou nanopumpy, které obsahují permanentní magnet a umožňují „dopravovat“ určitou látku například do mozku.
Cesta (zdaleka) nekončí
Na začátku si tým pod vedením Olega Heczka definoval dva hlavní úkoly: 1) co nejlépe pochopit původ jevu magnetické tvarové paměti, b) najít materiály lepší než ty stávající tak, aby byly schopny fungovat ve vyšších teplotách. Například v automobilovém průmyslu je to aspoň 150 °C. „Díky pětiletému projektu podporovanému a financovanému Grantovou agenturou České republiky jsme v bádání magnetické tvarové paměti postoupili zase o kus dál. Stále je ale hodně věcí neprobádaných, otázky spíše přibývají a cesta zdaleka nekončí,“ uzavírá Oleg Heczko.
Zjemňování dvojčatění před fázovým rozhraním austenit-martensit. Zdvojčatělá mikrostruktura v martensitu je tvořena směsí typů hranic dvojčatění. Optický mikroskop, Nomarského kontrast, velikost strany obrázku přibližně 1 mm.
„V době komunistické vlády byla rovná práva a příležitosti pro ženy jen proklamací. Tvrdilo se sice, že ženy mohou zastávat jakoukoliv práci, ale myslelo se tím, že mají třeba jezdit na traktorech nebo obsluhovat jeřáby. Věda a vedoucí pozice jejich oblastí moc nebyly. Dnes je to už jiné.“
Projekty základního výzkumu, které mohou získat veřejnou finanční podporu, hodnotí v Grantové agentuře ČR více než 400 odborníků. Mezi nimi je 22 % žen. Konečné slovo tady nakonec má ale jen pětičlenný orgán a tomu předsedá úspěšná česká vědkyně Alice Valkárová.
V posledních letech se na řídicích pozicích ve vědě a výzkumu u nás konečně objevuje více žen. Tak například Akademii věd ČR řídí od roku 2017 Eva Zažímalová – dřívější ředitelka Ústavu experimentální botaniky. Zmíněná Grantová agentura vyhlašuje každoročně veřejné soutěže, v nichž mohou vědci a vědkyně působící v České republice na projekty v základním výzkumu získat finance. Posuzování projektů tu probíhá v několika stupních. Poslední z nich tvoří pětičlenné předsednictvo a od roku 2016 stojí v jeho čele částicová fyzička Alice Valkárová. Ona sama má za sebou velmi úspěšnou vědeckou kariéru, jejíž značná část je spojena s německým Hamburkem, kde pracovala na experimentálním zařízení H1.
Vědkyně šéfují i velmi známým organizacím ve světě. Každý asi už zná Elona Muska, který mimo jiné založil společnost Virgin Hyperloop One. Ta se zabývá technologií transportu a ve své řídicí radě má viceprezidentku Anitu Sengupta. Tato žena dříve vyvíjela nosnou raketu pro Boeing a pracovala také na padáku, který zbrzdil vozítko Curiosity při přistání na Marsu. A stejně tak i Evropskou organizaci pro jaderný výzkum (CERN v Ženevě) řídí od roku 2016 žena. Je to – stejně jako Alice Valkárová – částicová fyzička, Fabiola Gianotti, která byla v době objevení Higgsova bosonu lídryní a mluvčí experimentu Atlas. Je to první žena na pozici generální ředitelky CERNu.
Zastoupení žen ve vědě je ale podle statistik stále nízké – v České republice bylo v roce 2012 jen 28 % výzkumnic. V západní Evropě je situace překvapivě ještě horší. Naopak mnohem lépe jsou na tom v Litvě, Bulharsku nebo na Slovensku. Alice Valkárové jsem se proto ze všeho nejdříve zeptala na to, jak situaci vidí ona sama:
Máte pravdu, ale zlepšuje se to, mladých žen je ve vědě víc. Možná je to proto, že už není tak velký společenský tlak, aby byly mámy s dětmi doma. Když jsem po roce 1989 přijela do Německa, zdejší matky nám záviděly množství mateřských školek. Česká republika je ale na druhé straně teď se svou tříletou nebo čtyřletou rodičovskou pauzou výjimečná.
A jak by mohla mladým vědkyním ještě pomoci Grantová agentura?
Grantová agentura své požadavky na juniorské řešitele projektů už dál snížit nemůže. Začínající excelentní vědkyně a vědci by byli sami proti sobě, kdyby po získání doktorátu nevyjížděli na stáže do zahraničí. Stáž může ale trvat i jen 6 měsíců a dokonce může být rozdělena na 2 tříměsíční celky. Chápeme, že studium je dlouhé a někdy ho přeruší i založení rodiny nebo něco jiného. Na to ale myslíme také, takže neřešíme, v kolika letech výzkumníci studium dokončili. Místo toho nás zajímá, kolik let uplynulo od získání jejich doktorského titulu. Můžeme tak podle jejich práce v týmech zkušených vědců lépe odhadnout, zda budou schopni sestavit svůj vlastní tým. Záleží nám na tom, jestli má jejich projekt šanci přijít s výbornými výsledky.
Proč je vlastně pořád málo žen v technických vědách, v matematice, ve fyzice, geofyzice nebo astronomii?
Protože holky nebaví matika a fyzika… Ne, vážně. Ženy a muži jsou opravdu rozdílní. Třeba sexuální zločiny páchají většinou muži. To, že jsou mezi muži a ženami rozdíly, je přirozený stav. A samozřejmě existují výjimky. Pravda ale je, že propagace vědy přispívá ke zvýšení zájmu i u děvčat.
A jak to bylo s vámi? Měla jste inspirativní učitelku fyziky?
Ale vůbec ne, já měla strašné učitele. Na gymplu jsem chtěla udělat dobrý dojem a náš učitel fyziky byl takový postrach, tak jsem si řekla, že mu ukážu, že opravdu nejsem hloupá. Dobře porozumět fyzice jsem tedy chápala jako výzvu.
Co vás tedy přivedlo k částicové fyzice? Co bylo tou motivací?
Mě k tomu přivedl zájem o hvězdy, o astronomii. Pochopila jsem, že bez znalostí fyziky to nepůjde a tak to celé začalo. Hodně mě podporoval můj tatínek, on byl takový renesanční člověk, uměl šest jazyků. Byl to vystudovaný právník, ale v padesátých letech pracoval ve slévárně. O všechno se zajímal, chodil často do vědecké knihovny, kupoval mi knížky, a když viděl, že mě zajímá astronomie, sestrojili jsme si dalekohled. Maminka byla docela obyčejná pokladní v obchodě. Myslela si, že bych měla zůstat doma v Ostravě a jít na pedagogickou fakultu. Tu jsme dokonce měli přes ulici. Já ale nechtěla být učitelkou, musela jsem do Prahy na Matfyz. Byla jsem odhodlaná a nikdo mě od toho neodrazoval.
Slyšela jsem, že v Praze na strojní fakultě ČVUT jsou dívky tak vzácné, že se jim vyučující prý snaží víc věnovat. Setkala jste se vy osobně někdy s diskriminací kvůli pohlaví? Čekala bych, že možná spíš s tou negativní?
Já jsem to moc nevnímala. Spíš to bylo tak, že když se zdálo, že jsem dobrá, tak mi profesoři pomáhali. Pravda ale je, že jsem po skončení studia na Matematicko-fyzikální fakultě UK dva roky pracovala jen jako stážistka a pořád jsem nemohla sehnat stálé místo. A přitom moje diplomová práce vyšla v prestižním vědeckém časopise Nuclear Physics. Po roce 1968 byla situace v české vědě zoufalá. Nesmělo se do zahraničí, věda stagnovala, lidé neměli uplatnění. Profesor Úlehla mi tehdy slíbil, že dostanu místo, když pojedu na 3 roky do Spojeného ústavu jaderných výzkumů do sovětské Dubny, kde budu pracovat na experimentu s dalšími vědci nejenom ze zemí východního bloku. A nějaká pozitivní diskriminace tam byla – cizinci měli výhodu, např. nedostatkové potraviny mohli kupovat ve speciálních obchodech.
V Dubně jste nakonec zůstala 7 let. Proč vlastně? Byla tam tak zajímavá práce?
To taky. Obhájila jsem tam titul CSc, což tam trvalo déle, ale taky tam měli (v roce 1973) největší protonový urychlovač na světě. Stejně ale sovětská věda zaostávala, všechno ostatní tam bylo hrozně pomalé. V Dubně jsem se taky seznámila se svým prvním manželem a narodila se nám dcera. Manžel byl z Košic a po skončení projektu jsem dostala nabídku pracovat v Ústavu experimentálnej fyziky AV právě v Košicích. Když mi ale řekli, že bych se tam měla věnovat biofyzice, odmítla jsem a napsala profesoru Úlehlovi, že chci zpátky do Prahy.
Byla jste mladá vědkyně s dítětem. Jaké to tehdy bylo? Jak se vlastně dá spojit vědecká práce s pečováním o dítě?
Přiznávám, že těžko. V Sovětském svazu navíc selhávala infrastruktura všeho druhu. Pár týdnů jsem zůstala u rodičů v Ostravě, ale potom jsem měla pocit, že když jsem byla „vyslaná“, měla bych pracovat. Tak jsme zase odcestovali do Dubny. Zkoušeli jsme jesle i chůvu, ale nakonec bylo lepší, když mi pomáhali rodiče. Nějaký čas zůstali s námi a potom s holčičkou zase odjeli do Ostravy, různě jsme to střídali. Když začala chodit do školky, byla často nemocná. Výhodou naší práce bylo, že jsme ani já, ani můj manžel neměli fixní pracovní dobu a část práce se dala dělat i doma.
Tak mě napadá, že tenkrát taky byla složitější komunikace. Jak vlastně vědci spolupracovali, když ještě nebyl internet?
(smích) No… dneska už si to ani nedovedeme představit. E-mail jsme začali v Hamburku používat asi v roce 1990. To bylo úžasné zrychlení komunikace. Když jsem pracovala na experimentu v Rusku, tak se všechno dělalo na místě. Byli tam zapojeni vědci z Prahy, Košic a z Helsinek. Data se ukládala na magnetické pásky, které se musely distribuovat fyzicky, scházeli jsme se na poradách a vytvářeli společné publikace. V ústavu byla dobře zásobená knihovna.
A jak vypadá takový pracovní den vědců, jejichž oborem je fyzika?
To záleží na tom, jaké oblasti se věnujete. Můj manžel je teoretický jaderný fyzik. Píše vzorce a mohl by pracovat i doma, ale dává přednost své skupině spolupracovníků. Ty má i v zahraničí, dnes to není žádný problém. Jiní fyzikové pracují na experimentech v laboratořích. Já sama jsem pracovala už od studií na počítačích, tehdy byly ještě oproti dnešním obrovské a pro zadávání dat se používaly děrné štítky. V Hamburku bylo mým úkolem naprogramovat prostředí, potom se nabírala data, teprve pak jsem se mohla účastnit vyhodnocení výsledků a psaní publikací.
Dnes je věda globalizovaná a vědci mají – i díky internetu – přístup k výsledkům výzkumů svých kolegů po celém světě. Vraťme se ale ještě zpátky do doby, kdy Východ od Západu oddělovala „železná opona“. Už jsme zmínily, že třeba z Československa vědci po roce 1968 za oponu nemohli. Jak na tom tedy byla věda ve Východním bloku? Držela krok s tou západní? Věděli jste o sobě navzájem?
Ona ta železná opona byla taková polopropustná. My jsme věděli, co dělají na Západě, sledovali jsme jejich výsledky výzkumu. Oni o nás naopak moc nevěděli. Když jsme v roce 1986 přijeli na konferenci do Rakouska, všichni se tam mezi sebou znali a my byli tak trochu stranou. Jinak ale v Sovětském svazu byla spousta velmi dobrých vědců. Tehdy ve Spojeném ústavu jaderných výzkumů v Dubně působili i nositelé Nobelovy ceny. Hodně talentovaných lidí potom po rozpadu Východního bloku odešlo na Západ.
Teď pracujete v Grantové agentuře ČR. Cesta sem vedla také přes práci na projektech v zahraničí, předsednictví v České fyzikální společnosti a práci v hodnoticích panelech European Research Council. Máte spoustu zkušeností, ale může jadernou fyzičku bavit organizace a vytváření podmínek pro českou vědu?
Ano a dokonce to přišlo v pravou chvíli. Já jsem vlastně celý svůj profesní život prožila jako zaměstnanec Matematicko-fyzikální fakulty Univerzity Karlovy. Byla jsem tedy vyslaná do Dubny a potom do Hamburku, ale pořád jsem pracovala na Matfyzu. V Hamburku jsem 20 let pracovala ve výzkumném centru DESY (Deutsches Elektronen-Synchrotron), na experimentu H1 na collideru elektronů a protonů HERA, tam se mi opravdu líbilo. Na experimentu v Dubně měla výzkumná skupina 20 členů, ale v DESY bylo v našem týmu asi 300 lidí. Jenomže dříve se programovalo v jazyce Fortran (programovací jazyk navržený firmou IBM pro vědecké výpočty a numerické aplikace, pozn. red.) a dnes se už používá C++. Na matfyzu jsem vedla studenty, kteří analýzu prováděli, a společně jsme pak pracovali s výsledky. Vlastně jsem tam v posledních letech pracovala hlavně jejich prostřednictvím. Když experiment skončil a mí studenti obhájili tituly, přemýšlela jsem, co teď budu dělat. Asi mám v životě štěstí – a to se už potvrdilo víckrát. Měla jsem s hodnocením projektů už dlouhé roky zkušeností nejenom v české Grantové agentuře, ale taky v evropském ERC (European Research Council), a dostala jsem šanci.
Ani v Grantové agentuře ale v panelech, kde se projekty hodnotí, není mnoho žen. Mezi 415 hodnotiteli je jich tu jen 22 procent.
Vidíte, čekala jsem, že alespoň společenské a humanitní vědy nám to zastoupení žen v panelech zvýší, ale ani tam jich není tolik. Nedávno jsem byla na schůzi Mezinárodní rady pro vědu, vývoj a inovace a byla jsem tam opět jediná žena. Myslím ale, že postupně se to zlepšuje. V době komunistické vlády byla rovná práva a příležitosti pro ženy jen proklamací. Tvrdilo se sice, že ženy mohou zastávat jakoukoliv práci, ale myslelo se tím, že mají třeba jezdit na traktorech nebo obsluhovat jeřáby. Věda a vedoucí pozice jejich oblastí moc nebyly. Dnes je to už jiné.
VIZITKA
Alice Valkárová (*1947) vystudovala jadernou fyziku na Matematicko-fyzikální fakultě Univerzity Karlovy, kde také od roku 1970 působila. Předmětem jejího zkoumání byly interakce částic při velmi vysokých energiích a procesy při jejich srážkách. Podílela se na stavbě experimentálního zařízení H1 budovaného na urychlovači protonů a elektronů HERA v Hamburku. Je autorkou nebo spoluautorkou 272 původních vědeckých prací a více než 10300 citací. Od roku 2014 je místopředsedkyní České fyzikální společnosti a od roku 2016 předsedkyní Grantové agentury ČR. Je laureátkou Ceny Milady Paulové za rok 2015. Tato cena je udělována vědkyním jako ocenění za jejich badatelskou práci.
„Aktivní membránové optické prvky na bázi kapalin.“ Tak se jmenoval projekt, na kterém po dobu tří let pracoval tým pod vedením profesora Antonína Mikše z pražského ČVUT. Projekt byl zaměřen na analýzu, modelování a měření deformace membránových prvků, výzkum optimálních materiálu pro vývoj membránových kapalinových čoček, analýzu optického návrhu s takovýmito prvky a experimentální charakterizaci fyzikálních parametrů aktivních membránových čoček.
Téma projektu nebylo vybráno náhodou. Jde o aktuální problematiku, která je velmi zajímavá a následně též aplikovatelná v praxi ve vývoji budoucích optických systémů a přístrojů, kde mohou aktivní optické prvky principiálně nahradit celou řadu složitých klasických systémů vzhledem k nižším výrobním nákladům, rychlejší změně optických parametrů a možnosti miniaturizace.
Čočky a zrcadla, které se hýbou.
„Klasické optické prvky, například čočky a zrcadla, které každý zná z přístrojů jako je fotoaparát, mikroskop nebo dalekohled, mají neproměnné optické a geometrické vlastnosti. V současné době jsou ale zkoumány a mnohdy již i vyráběny optické prvky, které mohou svoje optické a geometrické vlastnosti řízeně měnit, což se jeví jako velice výhodné pro mnohé aplikace,“ přibližuje téma projektu jeden ze členů řešitelského týmu profesor Jiří Novák. „Lze tak například mít jednoduchou čočku, která umožňuje elektronicky plynule přeostřovat na různé vzdálenosti, nebo naopak zrcadlo, které mění řízeným způsobem svůj tvar. Jedním z takových prvků jsou čočky, jež mají jako jednu nebo obě optické plochy elastickou deformovatelnou membránu, která mění svůj tvar v důsledku změny tlaku kapaliny uvnitř čočky. Změnou tlaku kapaliny uvnitř čočky lze tak ovládat zakřivení ploch čočky a její zobrazovací vlastnosti.“
Teoretická analýza a počítačové modelování
Práce na projektu byla rozdělena částečně na teoretickou analýzu a počítačové modelování dané problematiky mechanických a optických vlastností membránových optických prvků a na experimentální práci při ověřování dané problematiky v laboratoři. Společně s Ústavem makromolekulární chemie Akademie věd ČR probíhala spolupráce při vývoji a testování materiálů pro experimentální výrobu elastických membrán.
V rámci teoretické analýzy a modelování byly rozvinuty metody popisu a numerického výpočtu deformací membránových optických prvků a byly vyvinuty některé algoritmy a výpočetní metody pro návrh a analýzu optických soustav s optickými prvky s plynule proměnnými optickými vlastnostmi. V rámci experimentální části projektu byly vyvinuty laboratorní modely zařízení s membránovými prvky pro ověřování teoretických poznatků a charakterizaci membránových optických prvků.
„Hlavní výzvou pro nás asi bylo rozvinutí teorie a návrh matematických modelů pro přesný výpočet deformací tenkých elastických membránových prvků, která nebyla pro dané účely dostatečně dobře rozvinuta. Taktéž byly vyvinuty nové metody umožňující primární návrh zoom optických soustav s aktivními optickými čočkami,“ říká profesor Novák.
Využití v praxi? Ano!
Jak mohou být získané poznatky využity v praxi? Mohou být aplikovány při vývoji a aplikacích membránových optických prvků a hybridních optických soustav s takovýmito prvky. Od doby skončení projektu se objevil již celkem velký počet vědeckovýzkumných i komerčních aplikací, které používají například membránové kapalinové čočky. Vlastnosti komerčně vyráběných membránových čoček jsou však stále dosti omezené. Nicméně lze předpokládat, že do budoucna se jejich vlastnosti zlepší, což přispěje k významnějšímu počtu aplikací i v komerční sféře.
Cíle splněny na více než 100 %
Řešitelský tým profesora Mikše dokázal splnit cíle projektu vrchovatě. Posunul rozvoj problematiky teoretické analýzy, popisu a modelování mechanických, optických a materiálových vlastností optických membránových prvků a návrhu hybridních optických soustav s takovými prvky v celosvětovém měřítku. Důkazem je i 15 publikací v impaktovaných zahraničních časopisech, které jsou pravidelně citovány. K úspěchu projektu také přispěla Grantová agentura České republiky. „Bez podpory GA ČR by se náš vědecký tým touto problematikou též zabýval, nicméně určitě ne tak intenzivně a nemohl by provádět experimentální část práce,“ doplňuje profesor Jiří Novák.
profesor Antonín Mikš a profesor Jiří Novák
Cesta nekončí, pokračujeme dál.
V současné době pokračuje tým profesora Mikše v základním výzkumu netradičních optických prvků a možnosti jejich využití v návrhu nových typů optických zobrazovacích a měřicích soustav, které do značné míry mohou změnit optické a optoelektronické systémy budoucnosti. Též spolupracuje na projektech aplikovaného výzkumu a vývoje v oblasti návrhu, konstrukce, výroby a kontroly vysoce precizních optických zobrazovacích soustav pro hi-tech aplikace.
Oblasti teoretického i experimentálního výzkumu, ve kterých bylo v projektu dosaženo znatelného pokroku, lze shrnout v následujících bodech:
metody teoretické analýzy a počítačových simulací principů elastického chování deformovatelných membrán,
metodika výběru vhodných optických transparentních materiálů pro membránové fluidní čočky,
metody teoretické analýzy a počítačových simulací procesů návrhu membránových fluidních optických prvků s laditelnými optickými parametry,
návrh a realizace unikátního laboratorního modelu membránových zařízení,
metodika teoretického modelování a měření deformovatelných elastických membrán,
metody teoretické analýzy, charakterizace a experimentálního ověřování modelů membránových fluidních čoček a hybridních optických soustav s kompenzovanými optickými vadami,
návrh a analýza vícekomorové membránové fluidní čočky,
realizace laboratorních modelů membránových čoček a ověření jejich funkčnosti,
metodika návrhu složitých optických systémů s laditelnou ohniskovou vzdáleností za použití membránových fluidních čoček,
metody teoretické analýzy a experimentální implementace membránových fluidních čoček do adaptivních optických systémů,
oblast charakterizace a testování laboratorních modelů aktivních membránových čoček.
Co se vám vybaví, když se řekne popálenina? Většina z nás asi ví, že popáleniny podle intenzity rozdělujeme do čtyř základních skupin. Ačkoli mohou být rozsáhlé popáleniny smrtelné, moderní způsoby ošetřování výsledky léčby výrazným způsobem zlepšily. Vědci v současné době pracují také na tom, abychom spálenou kůži dokázali zcela nahradit. Jedním z nich je také Ing. Alena Řezníčková Ph.D., která se po tři roky v rámci projektu „Fyzikálně deponované a ukotvené kovové nanostruktury na pevnolátkovém substrátu“ právě tímto úkolem zabývala. Talentovaná vědkyně se kromě obvyklých překážek provázející každé usilovné vědecké snažení, musela potýkat s rakovinou. Nevzdala se a projekt pod jejím vedením dosáhl skvělých výsledků, které byly kromě jiného také uveřejněny v prestižních světových vědeckých časopisech.
Pracujete v Ústavu inženýrství pevných látek. Můžete nám popsat, čemu se ústav věnuje? Zaměření Ústavu inženýrství pevných látek VŠCHT Praha navazuje na široký chemický základ, který je dále doplněn o základní teoretické poznatky z oblasti nauky o materiálu, to znamená fyzika a chemie pevných látek, termodynamika materiálů, a materiálového inženýrství, kam patří fázové a chemické rovnováhy a přenosové jevy. Výzkum zde je zaměřen na vlastnosti materiálů a jejich charakterizaci, ale také na základní procesy jejich přípravy a zpracování. Studovány jsou materiály kovové, anorganické nekovové, organické polymerní i kompozitní užívané jak pro svoje mechanické vlastnosti, využitelné například ve strojírenství, tak pro vlastnosti elektrické, optické či magnetické, využitelné v mikro a optoelektronice, tak i materiály vhodné pro bioaplikace.
V čem je pro vás práce v Ústavu zajímavá? Na Ústav jsem se dostala již jako studentka nejprve bakalářského, magisterského a poté doktorského studia. Tato katedra mne už jako studentku nadchla díky svému zaměření na pěstování buněk na polymerním substrátu jakožto náhrad popálenin kůže.
Ing. Alena Řezníčková, Ph.D.
Projekt, na které jste pracovala, laikovi asi mnoho neřekne. Můžete nám ho více přiblížit? Téma projektu bylo vlastně pokračováním mojí disertační práce „Nanostrukturování povrchu pevnolátkového substrátu“. Hlavním cílem bylo upravit povrch zkoumaného vzorku, polymerního nebo skleněného, pomocí fyzikálních a chemických metod tak, aby došlo ke zlepšení jeho vlastností pro aplikace v medicíně a elektronice. Samotný polymerní substrát je inertní, není tedy vhodný pro další aplikace. V projektu jsem se zaměřila na přípravu nanostruktur na pevném substrátu pomocí modifikace v plazmatu, depozice kovových vrstev či ukotvením nanočástic.
Jaké byly další cíle projektu? Studovat a optimalizovat povrchové vlastnosti substrátu po jednotlivých krocích modifikace tak, aby byl příznivě ovlivněn růst buněk. Růst buněk závisí na povrchovém náboji, chemickém složení povrchu, struktuře a topografii. Kromě kultivace buněk bylo také důležité zjistit, zda po určitém čase nedochází k zániku vypěstovaných buněk. Pokud by polymerní povrch s napěstovanými například kožními buňkami měl sloužit jako náhrada popálené kůže, nemělo by po určité době dojít k jejich zániku.
Dokážete kvantifikovat objem hodin, které jste na projektu strávila? Hodiny, které jsem věnovala řešení projektu, jsem nikdy nepočítala. Během dne se kromě výzkumu věnuji také vedení bakalářských a diplomových prací a výuce laboratoří. V projektu jsem sice uvedena jako jediný řešitel, ale nepracovala jsem na něm sama. S řešením mi pomáhali hlavně studenti a také zaměstnanci VŠCHT, kteří prováděli analýzy.
Snímky myších fibroblastů (L929) kultivovaných 72 h na původním a plazmatem (po dobu 120, 240 a 480 s) aktivovaném polyetheretherketonu pořízené pomocí skenovací elektronové mikroskopie. Pro získání snímků byla použita 3 různá zvětšení.
V čem byla hlavní výzva? S čím se musí vědec, pracující na tak složitém úkolu, popasovat? Hlavní výzvou pro dokončení projektu pro mne bylo hlavně překonání rakoviny. Musela jsem najít sílu hlavně sama v sobě a pokračovat dál ve výzkumu a ve vedení studentů, i když jsem na to zrovna neměla sílu ani myšlenky. U samotném projektu mě nic zásadního nepřekvapilo, už ze studia jsem zvyklá, že ne všechny experimenty probíhají a vychází tak, jak by si člověk představoval. Na pozici vědeckého pracovníka je kromě nápadů na bádání důležitá také trpělivost.
Jak finančně byl projekt náročný? Jak těžké je na podobné projekty získat finanční prostředky? Roční náklady na projekt byly 1 040 000 Kč. Jelikož šlo o grant 3letý, tak celková finanční podpora od GA ČR byla 3 120 000 Kč. Osobně si myslím, že získat projekt není vůbec jednoduché, protože člověk musí přijít se zajímavým a neprozkoumaným tématem. Dále musí mít člověk dobré pracovní zázemí – od přístrojového vybavení až po podporu kolegů. Další velmi podstatnou roli pro získání projektu hrají publikace v odborných časopisech, které člověka naučí nejen sepisovat a obhajovat vlastní práci, ale také ukazují, že jeho výzkum má ve vědeckém světě smysl.
Ve stručném popisu projektu se píše, že byl „cele věnován atraktivnímu a v současnosti celosvětově široce a hojně studovanému tématu“. Předpokládám, že šlo o téma nanotechnologie. Ano, je to tak. Buňky nerostou na jakémkoliv substrátu. Musí se vytvořit vhodné podmínky pro jejich kultivaci. Důležitou roli při pěstování buněk na pevném substrátu hraje povrchový náboj, chemické složení povrchu, struktura a topografie. V projektu jsem se snažila tyto podmínky optimalizovat. Kromě kultivace buněk na pevném substrátu je také důležitá jejich životaschopnost, která je také ovlivněna výše uvedenými podmínkami.
Jak mohou být získané informace využity v praxi? Můžete uvést nějaké konkrétní příklady, které by to přiblížily laikovi? Jelikož se v rámci GA ČR jedná pouze o základní výzkum, aplikace v praxi nejsou jeho náplní. Samozřejmě připravené substráty by mohly najít uplatnění ve tkáňovém inženýrství, například jako náhrady cév a popálenin kůže či v elektronice (senzory).
Snímky z transmisní elektronové mikroskopie: (A) koloidního roztoku zlatých nanočástic (B) koloidního roztoku zlatých nanočástic funkcionalizovaných bifenyldithiolem; snímky z transmisní elektronové mikroskopie s vysokým rozlišením: (C) koloidního roztoku zlatých nanočástic (D) koloidního roztoku zlatých nanočástic funkcionalizovaných bifenyldithiolem (E) detail snímku C.
Jakou roli v projektu hrál GA ČR? Grantová agentura ČR hrála velkou roli, jelikož finančně podpořila projekt. Bez těchto financí by nebylo možné řešení projektu vůbec uskutečnit.
Na čem dalším zajímavém nyní pracujete? Jaké další výzvy/mety máte před sebou? V současné době se zabývám přípravou magnetických nanostruktur na povrchu polymerního substrátu, které by mohly najít uplatnění při uchovávání dat. Jelikož mi v letošním roce končí grant, také u GA ČR, čeká mne v letošním roce podání grantu nového. V budoucnosti bych se také ráda habilitovala na docentku materiálového inženýrství.
Ve Sluneční soustavě jsou stovky tisíc známých planetek. Detailní informace máme zatím jen o několika tisících z nich. Ve vytváření modelů těchto vesmírných těles je Česká republika světovou velmocí. Právě na analýzu dat o planetkách byl zaměřen projekt Grantové agentury ČR „Celkový obraz hlavního pásu planetek – fyzikální vlastnosti planetek odvozené inverzí optické a infračervené fotometrie“. Tým, který vedl docent Mgr. Josef Ďurech, Ph.D., dokázal popsat více než tisíc nových těles. Získané informace využívají vědci z celého světa.
Jaké byly hlavní cíle projektu? Abych ho vysvětlil, musím začít trochu zeširoka. Většina z nás určitě dokáže jmenovat některou z planet Sluneční soustavy. Ve Sluneční soustavě je ale kromě nich také několik set tisíc známých planetek, což jsou tělesa o rozměrech od několika metrů do stovek kilometrů. O nich se dlouhodobě snažíme získat co nejvíce informací. Z nich se následně vytvoří model dané planetky a uloží se do databáze. Již před naším projektem existovaly řádově stovky takovýchto modelů a jedním z našich cílů bylo toto číslo navýšit. To se také skutečně podařilo, po třech letech fungování projektu jsme vytvořili asi tisíc nových modelů.
Co dalšího jste zjišťovali? Druhým hlavním cílem bylo vyvinout metodu, která by umožňovala tvořit modely planetek ze získaných dat v jednom procesu nebo zjednodušeně řečeno v jednom kroku. Měření planetek do té doby probíhalo tak, že se vzaly výsledky optického pozorování světelné křivky získané dalekohledem a z těch se zrekonstruoval tvar. Ten ale nebyl škálovaný na skutečnou velikost. Mohl být malý a světlý, nebo naopak velký a tmavý. Takto získaný model se pak následně nastavoval tak, aby odpovídal datům získaným z infračerveného měření. Byl to tak proces ve dvou krocích, nejdříve se získal tvar a pak velikost. My jsme chtěli vyvinout metodu, která by vzala tyto dva typy dat současně a iteračním procesem vytvořila najednou konečný model. To se nám také podařilo.
Optická a infračervená fotometrie. Co si pod tím máme představit? Optická část je to, co vidíme okem. K tomu používáme pozemské dalekohledy. Infračervená oblast je částečně dostupná také ze země, ale jen velmi obtížně. Proto využíváme především pozorování s kosmických sond a družic, které obíhají kolem Země. Na planetky dopadá sluneční záření a ony ho odrazí. Současně část tohoto záření pohltí a tím se zahřejí. My pak v optickém oboru sledujeme odražené záření, protože díky němu planetky svítí, a v infračerveném oboru sledujeme tepelné záření povrchu. Tyto dvě oblasti, tedy vizuální a infračervená, se vzájemně doplňují, protože z infračervené můžeme dobře určit rozměr těles, což nejde jen z optických dat. Když oba tyto způsoby spojíme, dokážeme říct, jak je planetka velká, jaký má tvar, jakou to má periodu rotace, kam směřuje rotační osa, můžeme také něco říci o tepelných vlastnostech povrchu, zda je spíše pokryt prachem nebo skálou.
Flora
Můžete popsat proces měření planetek? Jak dlouhou trvá, než máte dostatek dat, abyste ji mohli reálně popsat? Planetky jsou na obloze vidět jako hvězdy, které se na hvězdném pozadí pomalu pohybují. Obíhají kolem Slunce a rotují kolem své osy s periodou typicky několik hodin. Jak na ně svítí Slunce a ony se zároveň točí, tak my zjišťujeme, jak se mění jejich jasnost. Když je ta planetka například kulatá, tak se její jasnost v zásadě nemění, protože je ze všech stran stejná. Když je hodně protažená, tak naopak má velkou amplitudu světelných změn, tzn. jednou ji vidíme zepředu, kdy má malou jasnost, pak ji vidíme z boku, kdy má velkou jasnost. Když se shromáždí taková pozorování z několika let, kdy tu planetku vidíme z různých stran, tak můžeme docela spolehlivě zrekonstruovat její tvar. Dokážeme říct, zda je spíše kulatá, nebo spíše protažená, jakou má periodu rotace a kam směřuje její rotační osa. U některých planetek je to zajímavé samo o sobě, protože jsou to ta největší tělesa v hlavním pásu mezi Marsem a Jupiterem a pro ten zbytek malých těles jde spíše o to, shromáždit co nejvíce těchto údajů a pak na tomto základě říct něco o tom, jak se planetky dynamicky vyvíjí a co tam probíhá za procesy.
Ve Sluneční soustavě je podle vašich slov obrovské množství planetek. Podle čeho se rozhodujete, kterou z nich se rozhodnete zkoumat? My sami jsme nic nevybírali, protože jsme zpracovávali výsledky měření, které byly součástí jiných projektů. Ty byly zaměřené buď na nějaké speciální planetky, například zkoumaly planetky, které se přibližují blízko k Zemi a z nich si pak si vybíraly kandidáty na pozorování, nebo to byly projekty v rámci takzvaných celooblohových přehlídek. Ty na obloze pozorují a získávají informace o všem, co zachytí. Právě z nich jsme si brali data.
Jak fungují celooblohové přehlídky? Dalekohledy, především v USA, každou jasnou noc snímají oblohu a detekují planetky, měří jejich polohu a jako vedlejší produkt i jejich jasnost. Získaná data pak zveřejní a my je můžeme použít. Podobně to fungovalo i u těch infračervených dat, která jsou především z NASA družice WISE.
Jak taková typická planetka vypadá? Ty největší z nich jsou zhruba kulaté, ty menší jsou většinou nepravidelné. Aktuálně existují například velmi hezké snímky planetky Ryugu nebo Bennu. Tam vidíme, že na svém povrchu mají něco, co připomíná kameny nebo kusy skal a mezi tím jemný regolit a celé to vypadá jako hromada suti.
Fortuna
Pozorováním planetek se věnujete dlouhodobě. Jak si v této oblasti stojíme ve srovnání se světem? Troufnu si říct, že v oblasti vytváření modelů planetek jsme nejproduktivnější na světě a tyto modely pak pro své další výzkumy a měření používají vědci na celém světě. Tím, že jsme díky Grantové agentuře České republiky získali finanční prostředky na realizaci projektu a dokázali vytvořit modely tisíce nových planetek, jsme samozřejmě i u našich zahraničních kolegů zvýšili naši prestiž. Naši databázi využívá stále více vědců, což je pro nás také samozřejmě obrovská satisfakce. Výsledky slouží také k dalšímu základnímu výzkumu, například k odvození a získání dalších informací o dané planetce, jako jsou například její termofyzikální parametry apod.
Dá se říci, že váš projekt je součástí širšího zkoumání planetek na celém světě, jehož cílem je získávat o nich další a další informace? Ano, určitě. V současné době máme zmapovaných přibližně několik tisíc planetek, celkově jich jsou ale stovky tisíc. Ten vzorek je tedy stále malý. Naším cílem je mít modely alespoň pro půlku z nich. Pak bychom mohli například porovnat teorie o tom, jak vznikla a vyvíjela se Sluneční soustava s tím, co dnes reálně pozorujeme.
Hebe
Sledování planetek se věnujete většinu svého profesního života. Máte nějaký cíl, kam byste se chtěl dostat? Ono to v zásadě nemá hranice. Každý den přibývá stovky nově objevených planetek. Je to tedy takový závod s tím, jak rychle dokážeme ty nové modely odvozovat, když neustále přibývají data. Cíl je možná v tom, aby to jednou všechno běželo samo. Sama se stahovala data, samy se vytvářely modely a samy se ukládaly do databáze a já budu sedět a dívat se, jak to hezky přibývá.
Na čem dalším zajímavém nyní pracujete? V současné době zpracováváme velké množství dat z přehlídky oblohy ATLAS. Z nich bychom měli udělat další tisíce modelů. Druhý směr jsou detailní modely těch největších planetek. Ty dnes dokážeme největšími pozemskými dalekohledy vyfotit. Na fotkách jsou vidět ty největší krátery, a to je velmi dramatický posun vůči tomu, co bylo před deseti lety.
V poslední době se také stále více hovoří o možnosti těžit nerosty ve vesmíru. Jak se na to jako vědec díváte? Když se mluví o tom, proč zkoumat planetky, zmiňují se tři hlavní důvody. První z nich je vědecký, protože vědci jsou zvědaví. Druhý důvodem je, že planetky čas od času narazí do Země, s tím je spojená bezpečnost lidstva. Třetím je právě idea těžby nerostů. V této chvíli jsou tyto úvahy stále spíše na papíře, ale věřím, že se jednou uskuteční.
Itokawa
Je o váš výzkum zájem mezi komerčními firmami? Myslím si, že v této chvíli firmy samy neví, jakým směrem se v této oblasti vydat. Musí nejdříve vymyslet technologii, způsob, jak tam doletět nebo co tam přesně dělat. Spolupracujeme ale například s vědci z university ve finském Tampere, a ti se mimo jiné zabývají tím, jak zkoumat vnitřek planetek a s průmyslem mají užší spolupráci. Chtějí postavit sondy, které by toto uměly.
Jsme dnes schopni si z těch planetek odebrat nějaký vzorek? Ano, právě nyní jsou ve vesmíru dvě sondy, americká a japonská, a jejich cílem je jemně se dotknout povrchu planetky a přivézt jeho vzorek zpátky. To se již v minulosti povedlo Japoncům, ale byly to jen mikročástice, nyní chtějí odebrat větší část. Ta cesta ale trvá několik let.
Jsou pro nás planetky nebezpečné? Statisticky ano. V roce 2013 dopadl například velký meteorit poblíž ruského Čeljabinsku a způsobil značné materiální škody. Jednou z motivací sledování a zkoumání planetek je i to, že chceme znát všechna tělesa, která jsou na drahách, které kříží dráhu Země a mohla by se s námi srazit. U všech, které známe, dokážeme vyloučit, že se s námi srazí příštích 100 let. Může se samozřejmě objevit nějaká nová, u které se ukáže, že se se Zemí může srazit za 50 let. Nic takového ale zatím nehrozí.
Dynamika sociálního prostředí a prostorová mobilita v metropolitních regionech České republiky je název projektu Grantové agentury České republiky, který v letech 2014 – 2016 řešil tým pod vedením docenta RNDr. Martina Ouředníčka, Ph.D., vedoucího výzkumného týmu Urbánní a regionální laboratoře a proděkana Přírodovědecké fakulty Karlovy Univerzity. Hlavním cílem projektu bylo zkoumat dynamiku sociálního prostředí, která je ovlivňována různými druhy prostorové mobility, jako je migrace nebo dojížďka. Výzkum se zaměřil na procesy odehrávající se ve vnějších částech postsocialistických měst: rezidenční suburbanizaci a transformaci sídlišť. Tyto procesy se výrazně odlišují od vývoje v západní Evropě a Spojených státech a Česká republika je v řadě oblastí zcela unikátní.
V názvu projektu, který jste vedl, je sousloví metropolitní region. Co si pod tímto označením máme představit?
Ve středověku bylo město jasně prostorově ohraničeno, dnes ale mluvíme o městských populacích, které jsou rozptýlené za jeho administrativními hranicemi. Jednoduše řečeno, abychom dokázali přesně popsat procesy ve městech, musíme více zkoumat jejich bezprostřední okolí. Sem patří například proces suburbanizace, který jsme jako jeden z klíčových v našem projektu zkoumali.
Co přesně suburbanizace znamená?
Tento termín se používá k popisu růstu oblastí, tzv. suburbií, na okrajích velkých měst. Jde o jednu z mnoha příčin nárůstu měst. Město se geograficky rozšiřuje a z příměstských obcí se stávají nové geografické části města. Jde tedy o přesun populace a lidských aktivit, například pracovních příležitostí, z jádrového města do jeho zázemí. Počátek silné suburbanizační fáze se datuje do 20. let 20. století. Mezi městem a suburbii je velmi silná provázanost.
V projektu jste narazili na řadu odlišností v tom, co probíhá v metropolitních regionech v Česku a v jiných evropských městech nebo v USA. V čem tyto rozdíly spočívají?
Jde například o segregaci. Segregace má u nás a například v USA zcela jiné projevy. Ve Spojených státech ale i v západní Evropě jsou segregovány celé čtvrti ve městech, existují tam velké sociální distance mezi tradiční lokální populací a přistěhovalci, cizinci či jinými etniky. U nás je ta sociální vzdálenost díky specifické poloze i historii Česka relativně malá. Například nové bydlení, kde bydlí sociálně nejsilnější obyvatelstvo, je dnes paradoxně lokalizováno v dělnických a průmyslových lokalitách, jako například Smíchov, Holešovice, Karlín a dnes jsou z těchto čtvrtí mnohdy prestižní místa. To samé platí o okrajích měst, které byly za socialismu perifériemi, i tam se stěhuje silná sociální vrstva. Ani sídliště se sociálně nepropadají, což je velký rozdíl oproti celému západnímu světu. Tady vidíme, že procesy fungující v západní Evropě či USA se u nás projevují pouze omezeně.
Co vás ještě v průběhu výzkumu překvapilo?
Tím hlavním asi bylo, že pokud zkoumáme Česko a post-socialistický svět obecně, nemůžeme se příliš opírat o teoretické a myšlenkové přístupy západní geografie, protože ty u nás v řadě případů nefungují. Neplatí to jen pro Česko, ale i pro další země v postsocialistické části Evropy. Jak jsme již zmiňoval, na rozdíl od USA nebo například Paříže, nemáme u nás žádná segregovaná města nebo celé čtvrti. Sociálně vyloučené nebo segregované komunity se vytvářejí většinou v mikroměřítku domů nebo malých lokalit. Nefungují také metody tradičních výzkumů, které byly na západě využívány v 60. letech, protože se dnes řada prostorových procesů, jako je dojížďka, flexibilita a lokalizace práce, posunula. Museli jsme proto přijít na nové metody empirického měření.
Další zajímavost souvisí s takzvanými satelitními městy. Velká část médií a odborníků se na ně dívá jako na rakovinu našich měst. My jsme zde zkoumali sociální prostředí a ukázalo se, že v nich existuje vysoká sociální soudržnost. Zjistili jsme, že jsou tam lidé velmi aktivní. Zakládají spolky, přicházejí s novými nápady, pomáhají zastupitelstvu nebo se také posiluje demografická a socio-ekonomická struktura suburbánní populace. Určitě nepřekvapí, že nejvíce aktivit se koncentruje kolem dětí. Negativa spojená se satelitními městy jsou závažná, ale objevují se jen v omezené míře. Velikost a intenzita suburbanizace je navíc ve srovnání se Západem malá.
Jakým způsobem jste pro svůj výzkum získávali informace?
Základem jsou kvantitativní data, kam patří populační census, statistika bytové výstavby, čísla o migraci nebo další data z průběžné evidence. Využívali jsme také data od mobilních operátorů, geografické informační systémy apod. Klíčové je dostat se postupně přes data na národní úrovni až na úroveň metropolitních regionů, které jsme zkoumali především. Je důležité mít informace z mikroúrovně sledování. Proto jsme například využívali case study typických nebo naopak extrémních příkladů sousedství, čtvrtí nebo obcí. Postupně jsme tak šli do stále většího a většího detailu. Používali jsme také pozorování, dotazníky, rozhovory, tedy metody, které jsou schopné vysvětlovat dané kauzální závislosti, které kvantitativní analýza nezachytí.
Jak jsou získané informace využity v praxi?
Výsledky publikujeme ve formě specializovaných map, máme také specializovaný server www.atlasobyvatelstva.cz, kde je asi 200 map, které se používají například jako územně-analytické podklady. Významným partnerem je například Institut plánování a rozvoje hlavního města Prahy, kde pracují absolventi geografie z Přírodovědecké fakulty. Jedním z našich výstupů je vymezení Pražského metropolitního areálu pro tzv. Integrované teritoriální investice, kde kooperuje Praha a obce Středočeského kraje. Jde o vytýčení směru investic v řádu miliard korun, a to nejen v Praze, ale v celém regionu. Děláme také dílčí segregační studie. Například z poslední doby pro Prahu 14, Kladno nebo i pro komerční firmy. Pro jednoho významného developera jsme zjišťovali informace o tom, kdo je potenciální uživatel nového bydlení. Pro Středočeský kraj připravujeme prognózu budoucího vývoje populace. Výsledkem bude také populační kalkulačka, kde si každý starosta Středočeského kraje bude moci spočítat vývoj budoucího počtu obyvatel ve své obci.
Jakou roli ve vašich projektech a aktivitách hraje GAČR?
Všechny tyto věci bychom bez Grantové agentury ČR nemohli dělat. Díky GAČR jsme mohli získat všechny poznatky, ze kterých nyní v těchto dílčích projektech můžeme těžit, rozvinout teoretickou bázi našeho výzkumu a mezinárodní spolupráci. Zároveň se podařilo udržet široký tým zejména mladších vědců.
Na čem dalším zajímavém nyní pracujete?
Nyní pracujeme na projektu, který je specificky zaměřen na Prahu. Hlavní město je pro nás laboratoří urbánního výzkumu, protože některé procesy, pokud chcete dělat komparativní studie s evropskými městy, nelze popsat ani v Brně ani v Ostravě. V letošním roce jsme publikovali komparativní studii sídlišť v přibližně 15 hlavních městech Evropy a Prahu tam máme jako příklad.
Co jste zatím zjistili?
Máme premisu, že v domácnostech žijících v nových suburbiích bude docházet k rozdělování rodin a k odchodu jedné z jejích částí. Vycházíme z toho, že v 90. letech se do zázemí měst přestěhovali první obyvatelé a nyní nastává čas stěhování tzv. mileniálů. Otázka je, zda se budou pryč stěhovat děti nebo rodiče. To je zcela zásadní pro lokální i regionální politiky, pro bytovou politiku, sociální infrastrukturu atd. Zatím to vypadá, že se spíše budou stěhovat děti než rodiče. Předpokládali jsme, že budou rozhodovat sociální vazby a kontakty dětí v lokalitě, a naopak stále silné pracovní i osobní vazby generace rodičů ve městě. První výsledky ale ukazují, že i přistěhovalí rodiče si vytvořili v nových lokalitách relativně stabilní vazby a jejich rezidenční preference nebudou směřovat zpátky do měst.
Co ještě v projektu zkoumáte?
Druhá oblast jsou cizinci. V Praze jich žije kolem 17 %, což je ve srovnání s ostatními postsocialistickými městy zcela unikátní. V Budapešti, Bratislavě nebo ve Varšavě žije méně než 5 % cizinců v populaci. My chceme zjistit, jaké je demografické a migrační chování cizinců, zda například budou imitovat chování české populace, což se zatím ukazuje především u vietnamské menšiny. V USA a částečně i v západní Evropě se podobná situace vyvíjela spíše cestou segregace a etnické diferenciace suburbií, a bylo to špatně. My si myslíme, že u nás k segregaci cizinců docházet nebude. Chtěli bychom ale tyto procesy popsat a vysvětlit hned na počátku a pomoci například s přípravou bytové nebo integrační politiky na centrální i regionální úrovni.
Doc. RNDr. Martin Reichard, Ph.D. z Ústavu biologie obratlovců Akademie věd České republiky se řadu let zabývá koevoluční dynamikou v parazito-hostitelských systémech a dopadem nepůvodních druhů na reciproční vztahy mezi organismy. Jeho poslední projekt „Vliv nepůvodních druhů na hostitelsko-parazitické vztahy“ podpořila finančně Grantová agentura ČR.
Proč jste si vybrali právě toto téma projektu?
Téma projektu vycházelo z našeho předchozího zájmu o koevoluci mezi hořavkami a mlži. Tento vztah je v Evropě charakterizován parazitismem hořavek vůči mlžům. Hořavky využívají mlže tak, že kladou jikry do jejich žaberní dutiny a potomstvo hořavek se tam vyvíjí po dobu jednoho měsíce. Také mlži ve svém vývojovém cyklu potřebují ryby – prochází stádiem parazitické larvy zvané glochidium, které se musí uchytit na ploutvích či žábrech hostitelské ryby po dobu několika dní až týdnů, než se glochidium vyvine v juvenilního mlže. Hořavky se ovšem parazitaci glochidii umí bránit – ze společného soužití s mlži si tedy berou výhody, ale neplatí nic zpět.
V posledních 10-20 letech v Evropě probíhá invaze asijského druhu mlže, škeblice asijské. Zjistili jsme, že hořavka tohoto mlže nemůže využívat, protože se její parazitaci umí účinně bránit. Taková obrana je u evropských mlžů naprosto výjimečná.
škeblice asijské
Se specialistou na biologii sladkovodních mlžů Karlem Doudou z České zemědělské univerzity v Praze jsme se dohodli, že využijeme tohoto zajímavého fenoménu, abychom prozkoumali, jak invaze nepůvodních druhů mohou ovlivnit jemné vztahy na úrovni mezidruhových interakcí. Takové jemné vychýlení z rovnováhy způsobené nepůvodními druhy je v přírodě pravděpodobně velmi časté, ale moc o něm nevíme. Studium invazních druhů se často zaměřuje spíše na případy, které mají okamžitý a jasně viditelný dopad na místní ekosystémy. My jsme navíc zjistili, že různé populace původních druhů reagují na invaze zásadně odlišným způsobem, stejně tak jako různé invazní populace mají výrazně jiný vliv na původní druhy.
Co bylo hlavním obsahem projektu?
Primárně jsme se zabývali různými aspekty mezipopulační variability v úspěšnosti biologických invazí a míře jejich dopadu na původní druhy. V rámci řešení jsme kombinovali experimentální a terénní studie v oblastech invaze a v oblastech původního výskytu. Důležitou součástí byly také populačně genetické studie původních i invazních druhů, které umožnily pochopit historické vztahy mezi jednotlivými populacemi studovaných druhů a možné způsoby a cesty invaze. Projekt byl zastřešen tématem vztahu mezi hořavkami a hostitelskými mlži a ukázal, jak zásadně mohou koevoluční interakce ovlivnit biologické invaze obecně.
Jaké jsou závěry vašeho bádání?
Z obecných závěrů je asi nejdůležitějším zjištěním experimentální potvrzení zásadního vlivu mezipopulačních rozdílů v úspěšnosti invazí, jejich dopadu, ale také v míře zranitelnosti původních organismů. Termín „invazní druh“ může být tedy zavádějící – některé populace „invazního druhu“ mohou být v nepůvodním areálu velice problematické, jiné však nikoli. Toto zjištění také může pomoci vysvětlit známý fakt, že některé druhy se mohou dlouhodobě dostávat do oblastí nepůvodního výskytu bez viditelných dopadů na původní organismy. Náhle však nastane dramatická změna, po které má tento nepůvodní druh výrazně negativní dopady. Víme, že důvodů této náhlé změny může být více, ale invaze jiné, problematické populace jistě často hraje také svou roli.
Dále je zde mnoho specifických závěrů, například zjištění, že parazitace glochidii jednoho druhu mlže (v tomto případě invazního) vede ke křížové rezistenci a změnám v chování a energetickém metabolismu hostitelů, s výrazně negativními dopady na již tak ohroženou původní evropskou faunu velkých mlžů.
Co vás v průběhu práce na projektu nejvíce překvapilo?
Největším překvapením byla asi skutečnost, že u původních populací je možno sledovat první známky selekce – například populace hořavek, které jsou v kontaktu s glochidii invazního mlže, mu již, zdá se, dokáží lépe odolávat. To vše v průběhu jen několika generací. Doufáme, že mechanismus této obrany budeme moci dále studovat, protože by mohl poskytnout nový pohled na adaptivní imunitu u ryb a v širším kontextu pak také na resilienci mezidruhových vazeb ve vodním prostředí.
samec hořavky
Váš projekt zahrnuje celou řadu metodických přístupů. Jak dlouho jste na projektu pracovali a kolik lidí se na něm podílelo?
Ano, projekt opravdu spojuje molekulárně-biologické přístupy se sběrem ekologických dat v terénu v Evropě i Asii, experimentálním testováním hypotéz v laboratorních chovech, ale i analýzou potravního řetězce formou stabilních izotopů. To vše bylo možné jen díky tomu, že byl tento projekt pětiletý a že navazoval na předchozí dlouhodobý výzkum jiných otázek v rámci stejného modelového systému, včetně pilotní studie která nás k této problematice navedla. Na projektu se celkem formálně podílelo 7 vědeckých pracovníků a během doby řešení se v týmech řešitele a spoluřešitele v týmu objevilo 5 postdoktorandů z různých evropských zemí (ČR, Francie, Dánsko, Portugalsko). Projekt také přímo umožnil studium jedné doktorandky a třech magisterských studentů (z ČR a USA). Celkový počet lidí v týmu byl ale daleko vyšší – patřili mezi ně třeba kolegové a studenti z Hydrobiologického ústavu Čínské akademie věd ve Wuhanu, ale také kolegové z různých evropských zemí, kteří na projektu spolupracovali v rámci naší dlouhodobé spolupráce.
Jaký potenciál mohou mít výsledky vašeho projektu v oblasti ochrany přírody?
Sladkovodní mlži jsou celosvětově jednou z nejohroženějších skupin organismů s vysokým podílem již vyhynulých, nebo ohrožených druhů a dostupnost vhodných hostitelských ryb je základním předpokladem pro jejich přežívání.
Realizovaný projekt přinesl několik konkrétních poznatků využitelných při ochraně populací velevrubovitých mlžů. Jedná se o identifikaci rizik plynoucích ze šíření invazních druhů, a také o poznání důsledků mezipopulačních rozdílů v hostitelské kompatibilitě. Z těchto výsledků vyplývají například konkrétní doporučení pro management evropsky významných lokalit ohroženého mlže velevruba tupého (na fotografii). Ukazuje se, že vztah mezi rybami a mlži je výborný modelový systém pro studium přežívání a rizika koextinkce v rychle se měnícím prostředí. Velcí mlži a ryby také ukazují propojenost jednotlivých složek vodních ekosystémů, a protože jejich atraktivní vzhled vždy přitahoval pozornost člověka, mohou být výborným prostředkem, jak podnítit zájem veřejnosti o ochranu biodiverzity ve vodním prostředí.
velevrub tupý
Výsledky projektu byly publikovány v řadě prestižních odborných publikací. Jaké byly na ně reakce z vědecké obce?
Pilotní studie, která vedla k podání návrhu, měla celosvětový ohlas – článek o této studii (nikoli tedy studie samotná!) byl představen v Nature, odkud ho přebrala média po celém světě. Vlastní projekt měl potom velice slušný ohlas ve vědecké komunitě. Například jeden z článků publikovaný v roce 2017 nasbíral již v době sestavování závěrečné zprávy 26 citací ve WOS, nyní (květen 2018) je to již 51 citací na WOS a 78 citací na Google Scholar. Důležitá je samozřejmě také pozitivní reakce a zájem o téma při osobních setkáních, často vedoucí k pozvání k detailnějšímu seznámení s projektem formou semináře či zvané přednášky na konferenci. Právě při těchto příležitostech je možné výzkum posunout novými směry, ať již podněty kolegů či třeba i přímou dohodou spolupráce s využitím nám nepřístupných metodických aspektů. Aby k tomu došlo, musí kolegové z vědecké obce považovat náš výzkum za významný a zajímavý.
GAČR poskytla finanční prostředky na váš projekt „Určení buněčné role HelD, nového vazebného partnera bakteriální RNA polymerázy“. Proč jste si vybral právě toto téma projektu?
Tento projekt navazoval na projekt předchozí, ve kterém jsme studovali několik proteinů, které interagují s bakteriální RNA polymerázou (RNAP) – enzymem, který je klíčový pro přepis DNA do RNA. HelD byl v rámci tohoto předchozího projektu objeven jako nový interakční partner RNAP a vzhledem k centrální roli RNAP pro genovou expresi, která podmiňuje schopnost buňky přizpůsobit se změnám prostředí nebo patogenům přežít v hostiteli, bylo velmi atraktivní studovat dále tento protein a získat tak nové informace o fungování transkripčního aparátu.
Co bylo hlavním cílem projektu?
Primárním cílem projektu bylo charakterizovat protein HelD strukturně a určit jeho působení na RNAP a transkripci, a následně pak identifikovat podmínky, za kterých je důležitý pro buňku – byly testovány např. různé stresové situace. Na projektu jsme pracovali společně se strukturními biology, jmenovitě Dr. Janem Dohnálkem a jeho skupinou z Biotechnologického ústavu AV ČR ve Vestci.
Jaké jsou závěry vašeho bádání?
Projekt se postupně rozdělil do dvou větví. V jedné větvi jsme detailně prostudovali protein HelD a zjistili, že je důležitý pro správnou expresi genů (tj. produkci proteinů kódovaných těmito geny) důležitých pro tvorbu biofilmu.
Ve druhé větvi, která „vyrostla“ v průběhu projektu při studiu možného vlivu HelD na iniciaci transkripce, jsme objevili nový způsob, jakým může k iniciaci transkripce docházet. V učebnicích jsou již desítky let popsány 4 stavební kameny RNA, které jsou substráty RNAP: A, C, G, a U. My jsme objevili nový stavební kámen, nikotinamidadenin dinukleotid, zkráceně NAD. O NAD se vědělo, že je kofaktorem redox reakcí, při kterých působí jako přenašeč elektronů. My jsme zjistili, že může být použit RNAP jako startovací substrát a vytvořit tak nikotinamidovou „čepičku“ na 5´konci (tj. začátku) RNA, která danou RNA stabilizuje. Do té doby byla známa čepička pouze u eukaryot; struktura eukaryotické čepičky je však odlišná a není inkorporována pomocí RNAP. Tento objev způsobu inkorporace pátého stavebního kamene RNA kromě nás učinili paralelně a nezávisle kolegové z USA, což jsme navzájem zjistili na konferenci, kde jsme prezentovali velmi podobná data. Výsledkem byla společná publikace v Nature a následně i v Molecular Cell.
Jak dlouho jste na projektu pracovali a kolik lidí se na něm podílelo?
Na projektu jsme pracovali 3 roky, celkem 10 lidí a nepřímo se podílela i řada kolegů z Mikrobiologického ústavu, kteří v diskusích pomohli tříbit hypotézy. Byly použity přístupy genetické, biochemické, strukturní i počítačově-modelační. Kromě již zmiňovaných osob, byl důležitým spolupracovníkem Dr. Ivan Barvík z Matematicko-fyzikální fakulty Karlovy Univerzity, jehož expertíza s počítačovým modelováním biomolekul byla pro projekt zásadní.
Jaký potenciál mohou mít výsledky vašeho projektu pro možné medicínské a farmaceutické aplikace?
Náš objev (NAD) otevřel nový aspekt poznání, jak funguje genová exprese. Záhy po nás jiné skupiny popsaly tento fenomén, který jsme my objevili v bakteriích, i v eukaryotických buňkách jako jsou kvasinky nebo lidské buňky. Pochopení tohoto jevu a jeho role pro buňku je v začátcích a čekají nás jistě nová překvapující zjištění. Již teď je ale možné odhadovat, že využití této čepičky např. při cílené nadprodukci proteinů pro biotechnologické účely má značný potenciál zvýšit efektivitu takového procesu.
První větev – protein HelD – a jeho námi objevená role v tvorbě bakteriálního biofilmu dělá z tohoto proteinu zajímavého kandidáta pro cílení nových antibakteriálních látek pro léčbu obtížných infekcí.
Výsledky projektu byly publikovány v prestižních odborných publikacích. Jaké byly na ně reakce z vědecké obce?
Už bezprostřední reakce na konferencích byly velmi pozitivní. Narůstající množství publikovaných prací s touto tematikou z různých laboratoří ukazuje, že se jedná o nový atraktivní směr.
Chystáte nějaký další zajímavý projekt?
Zajímavých projektů máme několik, v různých fázích vývoje. Jeden za všechny – jedná se o nedávno započatý projekt – studium tzv. nanotrubiček – což jsou membránové struktury, prvně popsané v roce 2011, které mohou spojovat buňky nejen téhož druhu, ale i mezidruhově, a dokonce i bakterie s eukaryotickými buňkami. Ve vědecké komunitě nepanuje úplná shoda, zda tyto struktury vůbec existují a co všechno je možné jimi přenášet. My jsme dokázali, že je jedná o skutečný fenomén, dále identifikujeme a charakterizujeme geny, které jsou nutné pro jejich tvorbu. Dále studujeme podmínky, za kterých se tvoří a jaký vliv mají na bakteriální populace, jejich schopnosti kompetovat, či působit jako patogeny.
Bauhaus není jen supermarket pro kutily, ale také výtvarná a architektonická škola 20. a 30. let minulého století, ze které vzešlo mnoho zajímavých studentů. Jejich osudy mapovala Markéta Svobodová z Ústavu dějin umění Akademie věd České republiky a vtěsnala je do své knihy.
Proč jste si vybrala téma Bauhausu?
Tak nějak mi to samo přistálo na stole. Ozvali se mi z časopisu Centropa, který dříve vycházel v New Yorku a věnoval se střední Evropě. Chystali číslo věnované studentům Bauhausu a hledali někoho, kdo jim to napíše. Při té příležitosti jsem zjistila, že to téma není dostatečně zpracované, že o tom nikdo moc nepsal. Zabýval se tím pouze pan profesor Vladimír Šlapeta, ten se ovšem specializoval jen na architekturu. Napsat článek jsem tehdy pro nedostatek materiálů odmítla, ale nedalo mi to a kontaktovala jsem na Slovensku architekta Ladislava Foltýna. Přes něj jsem se dostala k jeho ženě Ivě Mojžišové, významné slovenské historičce umění, psala o škole uměleckých řemesel v Bratislavě, která z Bauhausu vycházela a spolupracovala s ním. Přiměla mě, abych se tomu tématu více věnovala, věřila, že se dá ještě spousta věcí zjistit. Obecně totiž panovala skepse, že už se nedá nic dohledat, že je to ztráta času. Smutné je, že se vydání knihy ani jeden z nich nedožil.
Kniha se jmenuje „Bauhaus a kultura v Československu. Českoslovenští studenti na Bauhausu 1919–1933“. Jak dlouho jste na tématu pracovala?
To je velmi těžké říci. Možná i deset let. Získala jsem tříletý grant od Grantové agentury České republiky, ale v té době už jsem měla spoustu věcí posbíraných, zjištěných a připravených. V mezičase se mi narodily dvě děti, začaly chodit do školy, čas běžel jinak. Vždy jsem toho nejvíce napsala o prázdninách. Jinak jsem ale fungovala jako normální spisovatel, zavřela jsem se do pracovny a psala.
Bylo by možné knihu napsat bez podpory Grantové agentury České republiky?
Obávám se, že ne. Díky grantu jsem mohla vyjet bádat do zahraničních archivů. Velký školní archiv je například v německé Desavě, kde škola Bauhausu sídlila. Odjela jsem také do Berlína, abych si prohlédla různé pozůstalosti. Sešla jsem se spoustou lidí, často i s potomky bývalých studentů, které bylo občas složité vyhledat. Mé pátrání fungovalo podobně jako tehdejší avantgarda – vznikla síť, která se začala propojovat, nabalovat, ozývali se mi další lidé, seznamovali mě s dalšími. Jedna věc je jasná: bez grantu bych neměla peníze na vydání knihy.
Koho zajímavého jste potkala?
Lidé, kteří se kolem Bauhausu sdružovali, byli vzdělaní. Stejné jsou i jejich děti. Velmi dobře se s nimi pracovalo. Během rozhovorů jsme narazili na spoustu kontroverzních věcí, vůbec se s nimi netajili, brali to, že to patřilo do té doby, a není třeba nic zastírat. Typograf Zdeněk Rossmann byl například velký komunista a jeho syn o tom mluvil velmi otevřeně.
Jak Bauhaus fungoval?
Bauhaus se často zaměňuje za styl, ale byla to spíše škola s různými metodami výuky. Prošla si odlišnými fázemi, které ovlivňovali její ředitelé. Prvním byl Walter Gropius, dalším Hannes Meyer a posledním Ludwig Mies van der Rohe, architekt, který je autorem brněnské vily Tugendhat. Nebylo to klasické studium, žáci například absolvovali akademii, umělecko-průmyslovou školu nebo stavební fakultu a na Bauhaus šli za modernějším vzděláním nebo pro inspiraci. Často studium ani nedokončili. Věděli, že se tam učí jinak, jinak se tam pracuje se studenty, šli tam na dva tři roky, aby se naučili rozdílně přemýšlet. Například Zdeněk Rossmann tam odešel, aby se naučil učit, protože chtěl reformovat školu uměleckých řemesel v Brně. To se mu bohužel nepovedlo, ale v Bratislavě na Škole uměleckých řemesel to fungovalo dobře. Inspiroval se i Baťa a v roce 1939 bylo ve Zlíně otevřeno učiliště pro průmyslové výtvarníky. Jejich systém výuky je aktuální doposud. Nechávali studenty pracovat na projektech, posílali je do textilních továren, kde sledovali práci v provozu. Architekti pomáhali od začátku při realizacích různých zakázek. To jsou věci platné i dnes.
Překvapila mě všechna ta jména, která se na Bauhaus vázala. Například malíř Paul Klee, ale také spousta Čechů. Například výtvarník a teoretik umění Karel Teige.
Desava byla z Čech blízko, proto tam od nás jezdilo hodně lidí. Ředitel Bauhausu Hannes Meyer naopak přijížděl často k nám, přednášel v Československu a jeho žena žila určitou dobu v Brně. Do Desavy často jezdila i textilní výtvarnice Jaroslava Vondráčková. Čechů tam působilo hodně.
Co vás nejvíce překvapilo při psaní?
Jak snadno se šíří fámy. V knihách se pořád dokola opakovala informace, že na Bauhasu studovalo jen sedm českých studentů. Přitom mi bylo jasné, že jich tam muselo být mnohem více. Pak jsem na to přišla. Ta informace se objevila v Teigově ReDu spolu s výzvou: „běžte studovat na Bauhaus, už zde studuje sedm českých studentů“. Týkalo se to pravděpodobně období, kdy tam Teige přednášel. Nějak se to zažilo a od té doby se to v literatuře pořád opakovalo. Nejvíce mě ovšem překvapily osudy lidí, kteří na Bauhausu studovali. Některé jsou opravdu tragické.
Kvůli nástupu nacismu v Německu, válce a židovské otázce?
To všechno se tam opakuje a jsou to spíše smutné příběhy. Je zajímavé, jak snadno byli lidé s německými nebo židovskými kořeny později po válce vyškrtnuti z veřejného života, jako by přestali ze dne na den existovat. Mnoho lidí utíkalo ve třicátých letech z politických důvodů nebo kvůli hospodářské krizi z Německa k nám. Díky silné německé komunitě zde snadněji získávali práci. Někteří zde dokonce fungovali načerno. V Československu se dalo do roku 1939 docela dobře přežívat. Někteří, jako například grafik Werner D. Feist, zde strávili skoro deset let. Ti nejlepší z Bauhausu odcházeli především do Ameriky, kde o ně hodně stáli. Amerika byla progresivní, za moře odešel třeba maďarský fotograf a malíř Lászlo Moholy-Nagy, který byl s Československem ve velmi úzkém kontaktu.
Který osud vás zasáhl nejvíce?
Například příběh architektky Edity Rindlerové, ke které jsem nemohla nic najít. Informace o ženách se obecně špatně hledaly, po svatbě měnily jména, Němky byly odsunuté, Židovky utíkaly do zahraničí nebo skončily v koncentračních táborech. Také Edita Rindlerová byla Židovka, proto jsem se obávala nejhoršího. Pak se mi ale ozvala jedna dokumentaristka z Chile, že to byla její teta a točí o ní dokument. Celá rodina se stihla před rokem 1938 vystěhovat do Chile. Paní Edita byla velká idealistka, proto se po roce 1947 vrátila do Československa budovat socialismus. Celý její příběh byl velmi turbulentní. Po vydání knihy se mi ozval její syn, před měsícem jsme se setkali a teprve mi dovyprávěl její příběh.
Byla škola Bauhausu hodně levicově orientovaná?
Škola byla progresivní, avantgardní a s tím vždy souvisela levicovost. Za prvního ředitele to bylo umírněné, změnilo se to až za Hannese Meyera. Ten byl radikální socialista a vedl k tomu i studenty. Města Paříž a Berlín se staly po Moskvě vedlejšími centry kominterny a Desava byla blízko.
Které stavby spojené s Bauhausem byste vyzdvihla v Česku nebo na Slovensku?
Bauhausem byl hodně ovlivněný český architekt Jaromír Krejcar. Nyní se na Slovensku v Trenčianských Teplicích bojuje o záchranu jeho léčebného domu Machnáč, který je v havarijním stavu. Byla by velká škoda, kdyby se ho nepodařilo zachránit. Nejznámější stavbou podle projektu pedagoga Bauhausu je ovšem vila Tugendhat v Brně od architekta Ludwiga Mise van der Rohe.
Jak Bauhaus ovlivnil českou kulturní scénu?
Poměrně dost. Například Hannes Meyer zde pořádal přednáškové turné, přátelil se Teigem, byli politicky stejně naladění. Teige zase jezdil přednášet do Desavy. Když Meyer po nuceném odchodu z Bauhausu odjel do Moskvy, tak ho navštívil i jeho druhý velký přítel brněnský marxistický estetik Bedřich Václavek, který o Bauhausu také často referoval. Architekt Jaromír Krejcar byl zase obchodním zástupcem firmy Bauhaus v Československu a jeho první manželka novinářka Milena Jesenská propagovala ideje Bauhausu v novinách a časopisech, například v Pestrém týdnu a podobně. Hodně se u nás angažoval i László Moholy-Nagy, který ovlivnil nejen českou typografii, ale i avantgardní film. Častým hostem v Desavě byla také Jaroslava Vondráčková, ta se přátelila s textilní výtvarnicí Otti Bergerovou a jako ředitelka prodejny Artělu nechávala dovážet do ČSR ručně tkané látky vyrobené v dílnách Bauhausu.
Kde lze v Česku obdivovat výrobky Bauhausu? Průmyslové výrobky lze určitě vidět v Umělecko-průmyslovém museu v Praze, nábytek například v Muzeu města Brna, které má skvělé sbírky. Grafický design nebo fotografie má ve svých sbírkách bohatě zastoupené Moravská galerie, ta se těmto tématům dlouhodobě věnuje, stejně jako například i Muzeum umění a designu v Benešově u Prahy, odkud jsem získala některé skeny fotografií Ireny Blühové.
Bauhaus už je pro vás uzavřená kapitola. Co máte v plánu dále?
Spolupracuji na projektu Proměna venkovské architektury s důrazem na vývoj v 19. a 20. století. Získali jsme na to grant NAKI (Národní a kulturní identita). Mapujeme změny ve venkovské architektuře a urbanismu právě v tomto pro venkov kritickém období. Jsme v kontaktu se starosty, s lidmi, některé domy zaměřujeme a kolegové z ČVUT je zpracovávají do 3D modelů. První výstava o moravských vesnicích by měla být na podzim ve Zlíně.
Co říkáte na dnešní architekturu?
V kontextu vesnice? Občas se někde najde něco zajímavého, obecně jsou ale dost zničené. Tam kde je tradice a osvícený starosta, to je radost. Mám ráda kontextuální architekturu, když architekti pracují s místem i historií a snaží se budovy citlivě zasadit do určitého prostoru nebo krajiny.
Kdo je Markéta Svobodová
Markéta Svobodová se narodila 14. srpna 1971 na Čeladné, vystudovala Filozofickou fakultu Univerzity Palackého v Olomouci a pracuje v Ústavu dějin umění Akademie věd. Zabývá se kulturou 19. a 20. století. Je autorkou a spoluautorkou několik publikací, například: Naprej! Česká sportovní architektura 1567–2012; Umělecké památky Prahy. Velká Praha; Krematorium v procesu sekularizace českých zemí 20. století. Ideové, stavební a typologické proměny; Zdeněk Rossmann/Horizonty modernismu; Bauhaus a Československo 1919–1938. Studenti, koncepty, kontakty.
Je matkou dvou synů – Františka a Jáchyma.
Co je to Bauhaus
Bauhaus je považován za jednu z nejvýznamnějších avantgardních škol moderního designu a architektury. Vznikla roku 1919 sloučením Akademie výtvarných umění s uměleckoprůmyslovou školou v německém Výmaru, v roce 1924 se přesunula do saské Desavy. Pro svůj pokrokový a levicový charakter byla v roce 1933 několik měsíců po nástupu nacistů k moci obviněná z „bolševické rozvratné činnosti“ a v Berlíně, kam se po uzavření v Desavě přestěhovala, rozpuštěna. Význam Bauhausu spočívá především v experimentálním přístupu v pedagogice. Avantgardním výtvarníkům bylo umožněno vypracovat a v praxi využít nové progresivní metody, které jsou aktuální dodnes
Významnými pedagogy školy byli: Walter Gropius, Hannes Meyer, Ludwig Mies van der Rohe, Johannes Itten, László Moholy-Nagy, Vasilij Kandinskij, Paul Klee, Marcel Breuer a řada dalších.
Rozmazaná fotografie. Problém, který řeší policie, když kamera nedostatečně nasnímá rychle jedoucí auto, astronomové, když pořizují snímky z kosmu, ale i laičtí fotografové, když si z exotické dovolené přivezou rozmazanou vzpomínku. Tým doc. Ing. Filipa Šroubka, Ph.D. DSc. z Ústavu teorie informace a automatizace Akademie věd ČR vyvinul matematické modely, kterými lze rozmazané digitální fotografie opravit.
Právě rekonstrukcí obrazu se zabýval čtyřletý projekt „Slepá dekonvoluce obrazu v limitních podmínkách”, financovaný Grantovou agenturou České republiky.
Prvním krokem projektu bylo správně matematicky modelovat proces snímání obrazu, během něhož dochází k mnoha degradacím, jako jsou šum, rozmazání nebo nedostatečné vzorkování. „Klasickým příkladem tohoto procesu, s kterým se běžně setkáváme, je pořizování fotografií pomocí digitálního aparátu. Obdobně však můžeme modelovat snímání obrazu u mnoha jiných, daleko specializovanějších zařízení, jako jsou astronomické dalekohledy, termovizní kamery nebo různé druhy mikroskopů,“ vysvětluje Filip Šroubek.
Smyslem rekonstrukce obrazu je nalézt numericky stabilní řešení, které by odhadlo původní, nedegradovaný obraz, a pokořit tak hranice možností měřící soustavy. Rozmazání obrazu modelujeme matematickou operací konvoluce a jeho odstranění se pak nazývá dekonvoluce.
„Komplexnější úlohu, kterou projekt řeší, představuje tzv. slepá dekonvoluce, kdy neznáme přesnou podobu rozmazání a je nutné jej odhadnout společně s nedegradovaným obrazem. Podařilo se nám naformulovat metodu založenou na pravděpodobnostním modelu, která úspěšně řeší problém slepé dekonvoluce na velké třídě reálných dat a i v situacích, kdy námi uvažovaný matematický model neplatí všude. Identifikovali jsme, že apriorní pravděpodobnost, jež automaticky určuje přesnost modelu, zvyšuje robustnost slepé dekonvoluce,“ říká doc. Šroubek.
Jeho tým aplikoval metodu rekonstrukce nejen v oblasti fotografie, ale také v astronomii, oftalmologii nebo nukleární medicíně.
„V současné době pracujeme na řešení ještě komplikovanější úlohy, kdy se rozmazání v obraze mění v závislosti například na hloubce scény nebo směru pohybu objektů ve scéně. Experimentálně jsme také vyzkoušeli implementaci přímo v mobilních telefonech,“ dodává doc. Ing. Filipa Šroubka, Ph.D. DSc. z Ústavu teorie informace a automatizace.
Výsledky svého projektu tým publikoval v 15 impaktovaných odborných časopisech a prezentoval na mnoha prestižních zahraničních konferencích.
Abychom poskytli co nejlepší služby, používáme k ukládání a/nebo přístupu k informacím o zařízení, technologie jako jsou soubory cookies. Souhlas s těmito technologiemi nám umožní zpracovávat údaje, jako je chování při procházení nebo jedinečná ID na tomto webu. Nesouhlas nebo odvolání souhlasu může nepříznivě ovlivnit určité vlastnosti a funkce.
Funkční
Vždy aktivní
Technické uložení nebo přístup je nezbytně nutný pro legitimní účel umožnění použití konkrétní služby, kterou si odběratel nebo uživatel výslovně vyžádal, nebo pouze za účelem provedení přenosu sdělení prostřednictvím sítě elektronických komunikací.
Předvolby
Technické uložení nebo přístup je nezbytný pro legitimní účel ukládání preferencí, které nejsou požadovány odběratelem nebo uživatelem.
Statistiky
Technické uložení nebo přístup, který se používá výhradně pro statistické účely.Technické uložení nebo přístup, který se používá výhradně pro anonymní statistické účely. Bez předvolání, dobrovolného plnění ze strany vašeho Poskytovatele internetových služeb nebo dalších záznamů od třetí strany nelze informace, uložené nebo získané pouze pro tento účel, obvykle použít k vaší identifikaci.
Marketing
Technické uložení nebo přístup je nutný k vytvoření uživatelských profilů za účelem zasílání reklamy nebo sledování uživatele na webových stránkách nebo několika webových stránkách pro podobné marketingové účely.