Foton-upkonverzní nanočástice: Nová generace luminiscenčních značek pro analytickou chemii a mikrofluidiku

Začátkem léta se v lesích a údolích objevují svatojánské mušky – světlušky (Lamprohiza splendidula). Jejich těla vydávají zelené světlo, kterému říkáme luminiscence. Trochu odborněji bychom mohli říci, že světlušky mají luminiscenční značky. I když jejich světlo je slabé, velmi dobře je vidíme. To je způsobeno okolní tmou, kdy nás neruší žádné jiné záření, tedy není přítomno rušivé pozadí. Stejný princip můžeme použít i při pozorování tak nepatrných objektů, jako jsou molekuly. Právě na něj se ve svém projektu podpořeném GA ČR, který byl hodnocen jako vynikající, zaměřil tým Antonína Hlaváčka z Ústavu analytické chemie AV ČR.

Fluorofory – klasické značky

Některé molekuly – fluorofory – také mohou vydávat luminiscenci, kterou nazýváme fluorescence. Luminiscence molekuly jednoho fluoroforu je velmi slabá, ale při nízkém pozadí je dostatečná dokonce i pro pozorování v optických mikroskopech. Fluorofor můžeme použít jako luminiscenční značku pro molekuly, kterým vlastnost luminiscence chybí. Tímto označováním si vybíráme, které molekuly můžeme pozorovat a které zůstanou skryté. Fluorofory jsou proto velmi významné a v řadě případů umožňují získat vynikající výsledky. Fluorescenci však vykazují i látky, které se běžně vyskytují v živých organismech a přírodních materiálech. Tyto přirozené fluorofory potom zvyšují pozadí a brání úspěšnému experimentu – je to jako bychom hledali svatojánské mušky se svítilnou na čele!

Foton-upkonverzní nanočástice – nová generace značek

Řešením tohoto problému se zabývá i Antonín Hlaváček. Jeho pozornost upoutaly především nanočástice, které vykazují zvláštní typ luminiscence – fotonovou upkonverzi. Fotonová upkonverze je zvláštní jev, kdy nanočástice absorbují neviditelné infračervené záření a vyzařují ho v podobě viditelného světla různých barev. Foton-upkonverzní nanočástice jsou velmi malé krystaly s velikostí přibližně 5-100 nm. „Díky obsahu vybraných lanthanoidů mají schopnost postupně absorbovat několik fotonů s nízkou energií – neviditelné infračervené záření. Nanočástice tak získá dostatek energie pro vyzáření fotonů viditelného světla,“ vysvětluje Antonín Hlaváček.

Luminiscence disperzí

Luminiscence disperzí různých foton-upkonverzních nanočástic vyvolaná tenkým paprskem neviditelného infračerveného laseru (zleva emise iontů europitých, thulitých, erbitých).

Využití foton-upkonverzních nanočástic

Velikost některých molekul, jako jsou proteiny, je s velikostí foton-upkonverzních nanočástic srovnatelná, a tak je možné je použít k jejich značkování. Jestliže foton-upkonverzními nanočásticemi označíme molekuly, můžeme je pozorovat a neruší nás žádné jiné zdroje záření na pozadí – jsou jako světlušky za bezměsíčné noci. Díky nízkému pozadí mohou být takto označené molekuly pozorovány dokonce jednotlivě, a to i s poměrně nenáročnou instrumentací. Tímto způsobem označené molekuly se uplatňují například v imunohistochemii, která umožňuje studium mikroskopické struktury živočišných tkání a rostlinných pletiv. Imunohistochemie umožňuje v mikroskopických preparátech specificky označit vybrané molekuly a pozorovat jejich prostorové rozložení. Podobně můžeme měřit i koncentraci molekul v imunochemických detekčních metodách. V tomto případě měříme intenzitu fotonové upkonverze označených molekul, ze které můžeme určit koncentraci stanovované látky.

Kromě zeleně zářících světlušek existují i další světélkující organismy, které vyzařující světlo různých barev. Něčeho podobného se Antonín Hlaváček pokouší dosáhnout ve světě nanočástic a molekul. Zabývá se vývojem foton-upkonvezních nanočástic, které mohou vydávat záření různých barev. Jedná se o takzvané multiplexování, které umožňuje současně pozorovat několik typů molekul.

Optická mikroskopie

Optická mikroskopie modrých a zelených foton-upkonverzní nanočástic adsorbovaných na skleněném substrátu. Velikost nanočástic je přibližně 25 nm.

V současné době Antonín Hlaváček využívá multiplexování v mikrofluidních experimentech, kdy s jeho pomocí může označovat (kódovat) mikrokapkové reaktory. To umožňuje provádět velké množství například biochemických experimentů a vyhodnocovat jejich výsledky během zlomků vteřiny. V navazujícím projektu ve spolupráci s Ústavem biochemie Masarykovy univerzity v Brně vyvíjí nové imunochemické metody. S využitím multiplexování s foton-upkonverzními nanočásticemi a automatizace na mikrofluidních čipech může být zlepšena detekce klinicky významných proteinových markerů. „V těchto experimentech je důležité detekovat minimální množství cílových molekul. Proto možnost pozorovaní a počítání jednotlivých molekul nachází skvělé uplatnění“, zamýšlí se doktor Hlaváček závěrem.

Antonín Hlaváček s týmem

Experti fotonové upkonverze na Ústavu analytické chemie AV ČR (zleva Julie Weisová, Antonín Hlaváček a Jana Křivánková). Antonín Hlaváček vystudoval obor biochemie na Přírodovědecké fakultě Masarykovy univerzity v Brně. V současnosti se věnuje přípravě nanočástic a vývoji instrumentace pro analytickou chemii. Antonín Hlaváček si velmi váží podpory GA ČR, výborného prostředí na Ústavu analytické chemie AV ČR a vynikajících kolegů, bez kterých by výzkum nebyl možný.

 

Autor textu: Ústav analytické chemie AV ČR

Prestižní projekty JUNIOR STAR: Představujeme unikátní výzkumy začínajících excelentních vědců

Pátý díl seriálu o vysoce výběrových projektech JUNIOR STAR se zaměří na další čtyři začínající vědce podpořené v letošním roce. Pětileté granty JUNIOR STAR mají za cíl díky nadstandardní podpoře až 25 milionů Kč umožnit excelentním začínajícím badatelům se vědecky osamostatnit, tedy začít se zaměřovat na vlastní výzkumné téma, a případně založit i novou vědeckou skupinu. Od příštího roku začne být řešeno šestnáct nový výzkumných projektů. Vypsání další soutěže JUNIOR STAR je plánováno na únor příštího roku.

OPTIMÁLNÍ NÁVRH V ELEKTROMAGNETISMU ZALOŽENÝ NA LOKÁLNÍ PERTUBACI PŘESNÝCH MODELŮ

doc. Ing. Miloslav Čapek, Ph.D., Fakulta elektrotechnická, České vysoké učení v Praze

„Projekt umožní navrhovat a vyrábět menší a lehčí zařízení, které budou vykazovat lepší parametry, a to za současného snížení časových i materiálových nároků.“

Podpořený projekt se zabývá hledáním optimálních tvarů elektromagnetických zařízení.

„Vše si můžeme představit na příkladu antény ukryté uvnitř každého bezdrátového zařízení, kupříkladu mobilního telefonu. Na takovou anténu klademe neustále se zvyšující množství požadavků; od její velikosti až po její účinnost. Proto je obtížné určit její vhodný tvar – možností je prakticky nekonečně. V praxi se snažíme tuto složitost snížit. Přesto přesahuje cokoliv, co umíme prozatím uchopit nebo spočítat,“ přibližuje předmět výzkumu badatel Miloslav Čapek a dodává: „Rozvoj tvarové optimalizace by pro nás byl naprosto nemyslitelný, kdybychom v předchozích letech nevyvinuli na Českém vysokém učení technickém unikátní elektromagnetické modelovací a výpočetní nástroje. Nechtěli jsme zůstat závislí na komerčních nástrojích. Tím se nám potvrdilo, že kvalitní základní výzkum může v krátké době generovat aplikovatelné výsledky,“ doplňuje vědec.

Projekt JUNIOR STAR si klade za cíl vyvinout efektivní metody tvarové optimalizace, která umožní nalézt nové a netypické tvary, které budou využity v bezdrátových, mikrovlnných a optických zařízeních. Řešitelé projektu spolupracují s nejvýznamnějšími skupinami v oboru a díky multidisciplinárnímu zaměření je možné, že dokonce vznikne také nový obor elektromagnetismu.

Capek_office

 

STRUKTURNÍ CHARAKTERIZACE INTERAKCÍ MEZI TRANSKRIPCÍ A OPRAVOU DNA

Mgr. Marek Šebesta, Ph.D., Středoevropský technologický institut Masarykovy univerzity (CEITEC)

 „Cílem projektu je popsat mechanismus komunikace mezi transkripcí a opravou DNA na molekulární úrovni, přičemž jeho objasnění přispěje k vývoji léčiv, které mohou být využity pro léčbu rakoviny.“

Projekt JUNIOR STAR zkoumá vztah mezi transkripcí, tj. přepisem genetické informace z DNA do RNA pomocí enzymů (RNA polymeráza), a opravou poškozeného DNA. Pokud transkripce poškodí DNA, které předurčuje vývoj a vlastnosti celého organismu, může dojít ke zrodu mutací, jejichž důsledkem může být vznik rakoviny. Právě RNA polymeráza se podílí na opravě jednoho z nejnebezpečnějších typů poškození DNA – dvouvláknového zlomu DNA.

„Snažíme se detailně porozumět doposud málo prozkoumanému fenoménu – jak mezi sebou komunikují transkripce a opravy DNA v buňkách. Proteiny, které jsme vybrali pro výzkum, jsou zmutované u pacientů s rakovinou nebo s neurodegenerativními chorobami. Pomocí nejmodernějších elektronových mikroskopů určujeme 3D struktury těchto proteinů, a zjišťujeme tak, jaký mají mutace vliv na vznik těchto závažných onemocnění. Tyto 3D struktury mohou být následně využity při vývoji léčiv, které by se, cílením na zkoumané proteiny, mohly podílet na léčbě rakoviny,“ přibližuje výzkum vědec Marek Šebesta.

Vědec původem ze Slovenska se začal věnovat vědě již na střední škole. Proto se rozhodl středoškolákům poskytovat podobnou šanci, jako měl on. „Je skvělé, že i díky podpoře Grantové agentury České republiky můžu středoškoláky zapojit do výzkumu, a tím tak přispívat k výchově budoucí generace vědkyň a vědců,“ dodává badatel.

Šebesta_foto_profil

 

VLIV GLOBÁLNÍCH ZMĚN NA BIOGEOGRAFII HUB A FUNGOVÁNÍ EKOSYSTÉMŮ

Mgr. Petr Kohout, Ph.D., Mikrobiologický ústav AV ČR, v.v.i.

„Chceme zjistit, jak moc se jednotlivé druhy hub liší ve své odpovědi na klima a tím pádem, jaké skupiny hub jsou ohroženější z hlediska klimatické změny.”

Projekt JUNIOR STAR Petra Kohouta z Mikrobiologického ústavu AV ČR poskytne bližší pochopení úlohy různých skupin hub v ekosystémových procesech, jako je například rozklad organické hmoty či výživy rostlin. Dále jeho výsledky pomohou přesnější předpovědi dopadu globálních změn na lesy, potažmo agroekosystémy.

Houby se významně liší v tom, jak získávají živiny skrz své podhoubí. Některé houby se živí rozkladem odumřelé organické hmoty, jiné žijí ve vzájemně prospěšné symbióze s kořeny stromů a jiných rostlin, další parazitují na hostitelských rostlinách či živočiších. V každém ekosystému je poměr mezi těmito skupinami hub jemně balancován a hraje významnou roli v celkové stabilitě místních komunit,“ říká řešitel projektu Petr Kohout a doplňuje: Změna druhového složení hub pak může ovlivnit řadu ekosystémových procesů, ve kterých hrají houby nezastupitelnou roli, jako je například rozklad organické hmoty a s tím spojené změny v koloběhu uhlíku, příjem živin hostitelskými rostlinami a s tím spojené změny ve vegetaci.“

Petr Kohout studoval doktorát na univerzitě v estonském Tartu a po jeho ukončení se vrátil zpět do České republiky. „Během svého doktorátu jsem pochopil, že špičková věda nemusí nutně záviset na velikosti země či honosnosti názvu vědecké instituce. Věda je především o lidech, dobrých a zajímavých nápadech a o vůli jít si za svým,“ říká.

Jeho projekt JUNIOR STAR bude probíhat nejen na území České republiky, ale v různých zemích světa, například ve Francii, Rakousku, Slovinsku, Norsku, Argentině, Jihoafrické republice, Austrálie apod. Globální rozměr výzkumu pomůže komplexně uchopit vliv hub v ekosystémech. Na řešení projektu bude spolupracovat také s kolegy z Finska, Španělska či Estonska.

Fotografie_pracovni_Petr_Kohout_02

 

ALCHYMIE VŮNÍ. REKONSTRUKCE STAROVĚKÝCH ŘECKO-EGYPTSKÝCH PARFUMÁŘSKÝCH POSTUPŮ: EXPERIMENTÁLNÍ PŘÍSTUP K DĚJINÁM VĚDY

Dr. Sean Coughlin, Filosofický ústav Akademie věd ČR

„Od parfumářů Kleopatřina Egypta po badatele Filosofického ústavu AV ČR. Za pomoci starověké historie a moderní vědy oživujeme nejslavnější parfumářské recepty starověkého Egypta a Řecka.“

webová stránka projektu

Badatel Sean Coughlin se zaměřuje na historické základy a vývoj parfumářství, starověkého umění spojovaného s alchymií a vzdáleného předchůdce dnešní chemie. Se svým týmem v rámci programu JUNIOR STAR zkoumá, jak extrahování, míchání a konzervace rostlinných esencí ovlivnily vědu, lékařství a kulturu Středomoří v antice, od vlády Alexandra Velikého až po vládu Kleopatry VII. (4.–1. stol. př. n. l.). Na základě starověkých receptur dochovaných v egyptských chrámech, řecké literatuře a lékařských textech, a za pomoci archeologických nálezů také replikuje starověké výrobní metody.

„Předchozí výzkum pomohl zjistit, jaké vůně tyto parfémy obsahují: jde například o myrhu, skořici, lilii a terebint. Stále ale nevíme, jak se parfémy vyráběly, protože původní techniky vymizely před více než tisíci lety. S podporou GA ČR jsme sestavili multidisciplinární tým sestávající z historiků vědy, egyptologů, organických chemiků a dalších odborníků z Filosofického ústavu. Naším cílem je využít doklady z prastarých zdrojů i nástroje moderní chemie a tyto ztracené techniky rekonstruovat. O výsledky se chceme dělit s veřejností a pořádat vzdělávací workshopy, kde budou mít lidé příležitost si toto starověké alchymistické umění sami vyzkoušet,“ říká Sean Coughlin, vědec původem z Kanady, který již zaznamenal první úspěch – podílel se na rekonstrukci staroegyptského parfému „Mendesian“ z doby královny Kleopatry VII.

V rámci projektu vznikne slovník staroegyptských, řeckých a latinských parfumerií. K dispozici bude také manuál parfumářských receptů a postupů a tři monografie o výrobě parfémů v kontextu dějin vědy a kultury, které má toto starověké umění představit široké veřejnosti.

Coughlin_foto

Technostres se stává fenoménem doby

Fenoménem dnešní uspěchané doby se stává tzv. technostres. Jeho vliv ještě akcelerovala pandemie COVID-19 a přesun dalších pracovních aktivit do online prostředí. Nejvíce ohroženou je skupina zaměstnanců nad 50 let. Z předběžných výsledků výzkumu Mendelovy univerzity v Brně ze čtyř zemí vyplývá, že až čtvrtina lidí v tomto věku trpí techno zahlceností, složitostí nových technologií, popřípadě tzv. techno invazí – tedy pocitem, že každého z nás lze zastihnout kdykoliv a kdekoliv a od technologií se prostě není možné odříznout.

Vědci MENDELU z výzkumného týmu Smart Society mají k dispozici data od 1300 zaměstnanců a osob samostatně výdělečně činných ve věku mezi 50 a 64 lety. „Téměř 40 % lidí v tomto věku se obává, že technologie, které využívají, usnadňují narušování jejich soukromí a podobně vysokému počtu seniorních zaměstnanců vadí, že údaje z jejich současných technologií můžou být vystopovány i za řadu let,“ uvedla Martina Rašticová, vedoucí Ústavu práva a humanitních věd a vedoucí výzkumného týmu Smart Society PEF MENDELU. Největší míru stresu (46,6 procent) ovšem zaměstnanci prožívají z toho, že jejich využívání technologií může být snadno kontrolováno.

Technostres jako moderní nemoc způsobenou neschopností vyrovnat se s novými počítačovými technologiemi zdravým způsobem už v roce 1984 definoval americký psychoterapeut Craig Brod. Postupně byl technostres popisován jako psychický stres, který vzniká v souvislosti s využíváním technologií, jehož součástí jsou také fyziologické a emocionální projevy.

„Problémy spojené s užíváním technologií se před několika lety proměnily z převážně fyzických, jako je zánět karpálního tunelu, na psychické. Lidé začali trpět psychickými obtížemi. Od nomofóbie, což je strach z bytí bez telefonu, přes syndrom falešného vibrování až po nespavost kvůli častému zírání do obrazovek nebo klasickou závislost na chytrém telefonu,“ uvedl Martin Lakomý, sociolog z výzkumného týmu Smart Society.

Součástí technostresu je dnes běžně například syndrom FOMO. Zkratka pochází z anglického Fear of Missing Out a popisuje strach z toho, že nám něco unikne. Co když zrovna někdo na Twitteru zveřejnil zásadní informaci? Nebo podniká něco zajímavého bez nás? „Studie potvrzují, že díky sociálním sítím a moderním technologiím míváme rovněž pocit nedokonalosti, nespokojenosti a neustále se srovnáváme s ostatními, což může vyústit v úzkosti, deprese až sebevražedné sklony. Ostatně na sociálních sítích jsou nejčastěji prezentovány úspěchy v soukromém i pracovním životě. Hádku, která snímkům předcházela, nebo jiné problémy aktérů, už sociální sítě neprezentují,“ uvedla Rašticová.

Nejčastěji jsou v souvislosti s technostresem popisovány následující stresory. Techno-přetížení, tedy situace, kdy používání počítačů a technologií nutí pracovat lidi více a rychleji. Techno-invaze pak popisuje stresor, který je způsoben přesvědčením, že člověk je vždy vystaven technologii a je možné jej potenciálně zastihnout kdekoli a kdykoli. Lidé také cítí potřebu být neustále připojeni a dříve pravidelný pracovní den se prodlužuje. Lidé vnímají podle vědkyně také velmi citlivě například technologickou složitost. Jsou často vyděšeni z různých aplikací, funkcí a IT žargonu.

Data týkající se technostresu nasbírali u srovnatelné skupiny respondentů v celkem čtyřech středoevropských zemích. Kromě ČR se jedná o Slovensko, Maďarsko a Polsko. V současné době probíhá jejich podrobná analýza, která má nejen popsat situaci ohledně technostresu u skupiny starších zaměstnanců a OSVČ, ale také přinést doporučení a postupy, jak se se stresem vyrovnat na individuální a organizační úrovni. Problematika technostresu je dále řešena také v rámci projektu podpořeného Grantovou agenturou ČR Digitalizace na trhu práce: výzvy, možnosti a nerovnosti pro starší pracující, který vede dr. Martin Lakomý z výzkumného týmu Smart society.

 

Autor: Mendelova univerzita v Brně

SOUVISEJÍCÍ ČLÁNKY

Parfémy za časů Kleopatry. Vědec z projektu Alchymie vůní ví, jaké byly a znovu je vyrobí

Jak lidé ve starověku získávali, kombinovali a uchovávali rostlinné esence? A jaké vůně z nich vyráběli? Sean Coughlin z Filosofického ústavu AV ČR chce experimentálně rekonstruovat postup přípravy několika starověkých řecko-egyptských parfémů. Na projektu s názvem Alchymie vůní spolupracuje s týmem historiků, egyptologů, filologů a organických chemiků. V příštích pěti letech chtějí každoročně jednu z těchto starověkých vůní oživit. Výzkum byl podpořen Grantovou agenturou České republiky ve vysoce výběrové soutěž JUNIOR STAR.

„Parfumářské umění starověkého Egypta a Řecka se většinou nedochovalo. Víme přibližně, jaké vůně parfémy obsahovaly: myrhu, skořici, kardamom nebo terebint. Mnohem méně ale víme o tom, jak se vyráběly nebo proč se vyráběly právě takto,“ říká Sean Coughlin.

Při studiu starověkých metod přípravy parfémů se opírá o znalosti moderní chemie a o starověké texty. „Hlavním zdrojem našich receptů na přípravu parfémů jsou starořecké lékařské texty, především z farmakologie,“ vysvětluje badatel. „Parfémy samotné byly často považovány spíše za léky a využívaly se na způsob aromaterapie. Vyráběli je většinou stejní obchodníci, kteří vyráběli léky.“

alchymie_vuni

Voňavkářství jako prapředek moderní chemie, na počátku byla žena

Vůbec první zaznamenaný chemický postup pochází z Babylonie v období kolem roku 1200 př. n. l. Jednalo se o výrobu parfému, jehož autorku, ženu jménem Tapputi, lze považovat za první doloženou chemičku v historii. Parfumářství zahrnovalo kromě chemie i znalosti z biologie, botaniky, ale také psychologie či přírodní filozofie.

Šlo o umění transmutace, ne nepodobné alchymii, kdy se olej nebo tuk měly proměnit a přijmout esenci a vůni něčeho jiného. Vůně se využívaly nejen k očistě těla a provonění šatů či vlasů, ale i k léčbě a k magickým rituálům. Měly i důležitou ekonomickou roli. Egyptské parfémy si získaly ohromnou popularitu ve starověkém Řecku a Římě. V Římské říši se dokonce prodávaly knihy s kosmetickými recepty na výrobu parfémů a voňavých mýdel s Kleopatřiným jménem.

Workshopy na výrobu parfémů

Tým Seana Coughlina se kromě samotných postupů výroby soustředí také na to, jak lidé od dob Alexandra Velikého po Kleopatru VII. (4.–1. stol. př. n. l.) těmto postupům rozuměli, jakým způsobem je předávali dál a jak jejich poznání ovlivňovalo tehdejší přírodní filozofii, medicínu, ale i umění a kulturu vůbec.

Kromě rekonstrukce starověkých parfémů, jako byly Stakte, Mendesion, Metopion, Susinum či „kouřový parfém“, bude výsledkem Coughlinova projektu také slovník egyptského, řeckého a latinského parfumářství, manuál receptů a procedur a tři monografie o výrobě parfémů v kontextu dějin vědy a kultury. V plánu je také pořádat workshopy pro širokou veřejnost.

 

Sean CoughlinSEAN COUGHLIN
Sean Coughlin v současné době působí ve Filosofickém ústavu AV ČR, kde vede výzkumný projekt Alchymie vůní podpořený v rámci soutěže Junior Star Grantové agentury ČR. Předtím pracoval v Collaborative Research Centre SFB 980 Episteme in Bewegung, v Institutu pro klasickou filologii při Humboldt-Universität v Berlíně, v Excellence Cluster Topoi a na University of Western Ontario. Absolvoval stipendijní pobyty v Berlíně a Jeruzalémě. Jeho práce byly vystaveny v muzeu National Geographic ve Washingtonu DC a v berlínském Muzeu dějin lékařství, zaujaly rozhlasovou stanici BBC, deníky Times, Washington Post a la Repubblica. Je jedním z editorů svazku The Concept of Pneuma after Aristotle (Berlin: Edition Topoi, 2020). Věnuje se starořecké filozofii, vědě a medicíně, zejména se zaměřuje na původ a recepci Aristotelovy přírodní vědy a na vztah mezi uměním a přírodou ve starověku.

 

SOUVISEJÍCÍ ČLÁNKY

Co je vír?

Vírové struktury, stručněji víry, nás v běžném životě doslova obklopují, i když je zpravidla vůbec nevnímáme. Dokonce i v případě jejich dynamických účinků, které na nás působí, je mnohdy nevnímáme jako víry, pokud nejsou dobře viditelné. Nemůžeme ani vyloučit jejich přítomnost v naší dýchací nebo srdečně-cévní soustavě.

Řada vírů bezprostředně souvisí s vlastní lidskou činností, technikou a technologickými procesy a zařízeními –  počínaje víry vznikajícími v úplavu nejrůznějších dopravních prostředků, výškových budov a konstrukcí a konče například procesy míchání a vírovými separátory.

Na příkladu tornáda je vidět, že víry hrají významnou roli při makroskopickém transportu hmoty, hybnosti a energie. Z toho plyne základní motivace k jejich výzkumu. Patří nepochybně k nejcharakterističtějším dynamickým strukturám proudění, proto jsou někdy přirovnávány k jeho „šlachám a svalům”. Víry jsou tedy v proudění tekutin zásadní. Ale co vlastně jsou a jak je definovat?

Vírové struktury vznikající v rámci nestacionárního proudění (zpravidla se jedná o proudění turbulentní nebo přechodové do turbulence) jsou doslova schopny „svého vlastního života”: svého vzniku a růstu, interakce s ostatními strukturami proudění, především s dalšími vírovými strukturami, interakce se stěnou či tělesy a konstrukcemi, a konečně podléhají vlastnímu rozpadu, nemají-li ke svému životu dostatečný přísun energie. Jejich rozměry se pohybují od neuvěřitelných několika ångströmů (10-10 m) v supratekutém héliu do rozměrů spirálních galaxií vyjádřených ve světelných letech.

V souvislosti s vírovými strukturami vzniká celá řada zajímavých otázek, a je tudíž s podivem, že vyčerpávající odpověď, byť intuitivně zřejmá, na tu nejzákladnější otázku „Co je vír?” se hledá již více než tři desítky let. Skutečná exaktní matematicko-fyzikální odpověď, tedy vlastní definice víru, respektive identifikace víru, je stále předmětem živé diskuse v odborné literatuře. Je přitom nesporné, že vzhledem k obrovské rozmanitosti proudění vírového charakteru jsou univerzální a fyzikálně dobře opodstatněné nástroje, tedy identifikační metody a kriteriální veličiny sloužící ke stanovení vírových struktur v proudění, nanejvýš potřebné a užitečné. Výše uvedenou otázkou „Co je vír?” se zabývali v nedávném úspěšném projektu „Pokročilá analýza proudových polí” také vědečtí pracovníci dvou spolupracujících akademických ústavů z AV ČR, Ústavu pro hydrodynamiku (ÚH AV ČR) a Matematického ústavu (MÚ AV ČR), pod vedením dvou původem strojních inženýrů, Ing. Václava Koláře, CSc., (ÚH AV ČR) a Ing. Jakuba Šístka, Ph.D. (MÚ AV ČR)

Prvním vážným problémem vírové identifikace je, že standardní intuitivní míry selhávají. Konkrétně uveďme několik takových typických charakteristik: (1) uzavřené nebo spirální proudnice (popř. trajektorie částic) nejsou bohužel galileovsky invariantní (tj. invariantní vůči rovnoměrné přímočaré translaci pozorovatele), (2) vířivost, tj. galileovsky invariantní průměrná úhlová rychlost elementu tekutiny, není schopna rozlišit mezi smykovým a skutečně rotačním pohybem ve víru, (3) lokální minimum tlaku obecně negarantuje existenci víru. Tyto skutečnosti motivovaly vznik celé řady poněkud sofistikovanějších metod, které můžeme zhruba dělit na kinematické a dynamické (podle výchozího popisu), dále na lokální (postačí znalost dat v daném bodě, např. znalost rychlostního gradientu) a nelokální (k vyhodnocení je nutná znalost informace ve více bodech současně), a konečně na metody regionální (popisující objemovou oblast víru) a metody čárové (popisující centrální osovou křivku víru neboli jeho centrální skeleton sestávající z bodů, kde je vírový pohyb v příčném řezu nejintenzivnější).
 


Nestlačitelné proudění okolo nakloněné desky s úhlem náběhu 30° pro Reynoldsovo číslo Re=300 a Re=1200, a okolo rotujícího křídla octomilky pro Re=500. Vizualizace vírů pomocí metod (zleva doprava) λ2, Q, průměrné korotace a trojné dekompozice.
Obrázek 1 – Nestlačitelné proudění okolo nakloněné desky s úhlem náběhu 30° pro Reynoldsovo číslo Re=300 a Re=1200, a okolo rotujícího křídla octomilky pro Re=500. Vizualizace vírů pomocí metod (zleva doprava) λ2, Q, průměrné korotace a trojné dekompozice.

Na identifikační metody se klade celá řada obecných požadavků, které zatím žádná metoda nesplňuje jako celek, a proto se také žádná z metod zatím nestala z fyzikálního hlediska jednoznačnou primární volbou. Z praktického hlediska lze některé metody, zejména některé lokální regionální metody, které jsou rychlé na vyhodnocení, považovat za rozšířené a populární. Obecné požadavky na identifikační metody zahrnují:

Ukázky identifikace vírů pomocí dvou velmi oblíbených metod a jejich porovnání se dvěma metodami vyvinutými V. Kolářem a J. Šístkem jsou na Obrázku 1. Ukázka společného zobrazení oblastí vírů a jejich pomyslného protipólu, tedy oblastí s výraznou deformací, je na Obrázku 2.

„V projektu Pokročilá analýza proudových polí jsme se mimo jiné zaměřili na kritické zkoumání vlastností nedávno navržené a mimořádně citované metody z roku 2018, definující jistou lokální veličinu v anglosaské literatuře nazývanou vortex vector nebo Rortex, v čínské literatuře zpravidla pod názvem Liutex. Jejím hlavním přínosem je její vektorový charakter. Projekt myšlenkově navazoval na zásadní práce Václava Koláře, kdy okolo roku 2007 navrhl metodu trojné dekompozice tenzoru rychlostního gradientu na část rotační, smykovou a elongační. Tato metoda stále budí značnou pozornost a je základem pro další metody vyvíjené jak v rámci tohoto projektu, tak i na řadě pracovišť ve světě. Rovněž metoda Rortex převzala některé základní rysy z dřívějších metod vyvinutých na Ústavu pro hydrodynamiku a Matematickém ústavu AV ČR,uvádí důležité souvislosti Jakub Šístek.

Kritická analýza Rortexu ukázala, že jako vírovou strukturu tato metoda identifikuje i strukturu s neomezeným radiálním či axiálním napínáním. Toto zjištění bylo nejprve publikováno v časopise AIP Advances a následně uvedeno v širších souvislostech v prestižním časopise Physics of Fluids. Bylo zejména poukázáno na důsledky nesplnění orbitální kompaktnosti vedoucí na tzv. „disappearing vortex problem“, tedy problém s nespojitým chováním vírové identifikace.

 


Zobrazení vírů (vlevo), zón s vysokou mírou deformace (vpravo) a jejich společné duální zobrazení (uprostřed) pro případ interakce Burgersových vírů pro Machovo číslo Ma=0,8.
Obrázek 2 – Zobrazení vírů (vlevo), zón s vysokou mírou deformace (vpravo) a jejich společné duální zobrazení (uprostřed) pro případ interakce Burgersových vírů pro Machovo číslo Ma=0,8.

Pro účely otestování nově vyvinutých identifikačních metod bylo potřeba provést řadu rozsáhlých simulací trojrozměrných úloh proudění. V těchto numerických experimentech se jednalo o řešení základních bilančních rovnic proudění, tedy Navierových-Stokesových rovnic. Za tím účelem tým okolo J. Šístka z MÚ AV ČR vylepšil metody rozkladu oblasti a provedl vysoce paralelní výpočty na počítači Salomon, největším paralelním superpočítači centra IT4Innovations v Ostravě.

V rámci projektu vznikla celá řada publikací včetně dvou monografií o numerických metodách. Projekt pomohl rozvíjet i open-source software. Jedná se především o softwarovou knihovnu Vortex Analysis Library (VALIB), do které byly všechny vyvinuté metody pro identifikaci vírů naprogramovány, a jsou tak k dispozici celosvětové komunitě. Druhým softwarem, který využívá výsledky projektu, je knihovna BDDCML řešící soustavy lineárních rovnic pomocí víceúrovňových metod rozkladu oblasti, a jejíž vývoj probíhá v Matematickém ústavu AV ČR již více než deset let.

Projekt se zabýval i dalšími neméně významnými tématy, například Z. Skalák zkoumal kvalitativní vlastnosti řešení Navierových-Stokesových rovnic a M. Křížek zkoumal geometrické vlastnosti výpočetních sítí využívaných v numerických simulacích.

 

Václav Kolář

Václav Kolář je absolventem strojní fakulty ČVUT v Praze a od roku 1979 pracovníkem Ústavu pro hydrodynamiku AV ČR. V roce 1991 dokončil dlouhodobý postdoktorální pobyt (stipendium Nadace Alexandera von Humboldta, 17 měs.) na technické univerzitě v německém Karlsruhe (Institut für Hydromechanik). Nejprve se zajímal hlavně o laminární a turbulentní smyková proudění, zejména tryskové proudy a úplavy. Opakovaně absolvoval kratší studijní pobyty v Anglii, Indii a Japonsku. Byl řešitelem řady grantových projektů (GA AV ČR a GA ČR). Autorský tým ÚH, ve složení Ing. Václav Kolář, CSc., a doc. RNDr. Zdeněk Skalák, CSc., obdržel cenu Akademie věd ČR za zvláště úspěšné řešení programových a grantových projektů za rok 2008. Od roku 2003 do současnosti je editorem pro mechaniku tekutin v časopise Open Physics (De Gruyter), dříve Central European Journal of Physics. Více než deset let se zabývá analýzou proudových polí, zejména identifikací vírových struktur. U velkých badatelů obdivuje vedle nadání hlavně nezlomnou houževnatost a někdy až neuvěřitelnou odvahu.

 

 

Jakub Šístek

Jakub Šístek získal titul Ph.D. na Fakultě strojní ČVUT v Praze. Od roku 2009 pracuje v Matematickém ústavu AV ČR. Jako postdok také pracoval v USA na University of Colorado Denver a ve Velké Británii na University of Cambridge a University of Manchester. Několik měsíců strávil v superpočítačových centrech v Edinburghu a v Bologni. Za svou doktorskou práci získal v roce 2009 Cenu Prof. Babušky a Cenu Zvoníčkovy nadace a v roce 2013 získal od AV ČR Prémii Otty Wichterleho. Jeho hlavním zájmem jsou algoritmy numerické matematiky šité na míru výkonným paralelním superpočítačům. Tyto metody aplikuje převážně v oblasti proudění tekutin a při analýze proudových polí. Podílel se jako člen týmu na několika mezinárodních a národních projektech a byl spoluřešitelem dvou standardních projektů GA ČR. Je spoluautorem softwarových projektů VALIB, BDDCML a PLASMA. Od roku 2020 se podílí na výuce matematiky na Fakultě informačních technologií ČVUT v Praze. K jeho dalším zájmům patří rodina, sport a cestování.

SOUVISEJÍCÍ ČLÁNKY

Prestižní projekty JUNIOR STAR: Představujeme unikátní výzkumy začínajících excelentních vědců

Granty JUNIOR STAR mají za cíl umožnit excelentním začínajícím badatelům se vědecky osamostatnit, tedy začít se zaměřovat na vlastní výzkumné téma, a případně založit i novou vědeckou skupinu. Soutěž je vysoce výběrová a uspějí v ní jen vědci, kteří nejen předloží kvalitní projekt, ale také již dosáhli významných badatelských úspěchů. Granty mají nadstandardní míru podpory (až 25 milionů Kč) a délku řešení (5 let). Letos začaly být poprvé řešeny projekty vzešlé z této soutěže. Další nadějní vědci získají podporu od příštího roku – vybrané projekty byly oznámeny již na začátku listopadu.

S vybranými projekty, jejichž řešení začalo letos, se můžete seznámit v tomto – již čtvrtém – dílu seriálu o projektech JUNIOR STAR.

MOLEKULÁRNÍ MECHANISMY NAVÁDĚNÍ AXONU

Mgr. Daniel Rozbeský, Ph.D., BIOCEV

„Cílem podpořeného projektu je objasnit fungování mechanismů navádění nervových buněk v mozku člověka, a přinést tak nové důležité poznatky o jejich komunikaci, které mohou pomoci při léčbě závažných nemocí.“

V lidském mozku se nachází téměř 100 miliard nervových buněk, neuronů, které jsou základní nervovou jednotkou tkáně. Můžeme si je představit jako strom – z jeho koruny se rozvětvují četné výběžky, jejichž funkcí je přivádět do neuronu informace v podobě signálů, které vyvolávají nervový vzruch. Část neuronu, kterým se zabývá projekt Daniela Rozbeského, se nazývá axon. Právě axonem se nervový vzruch šíří až na samotný konec neuronu připomínajícího kořeny.
Každý z nás má v mozku 100 biliónů neuronových kontaktů, které definují jeho intelekt, paměť, emoce, řeč, nebo smyslové vnímaní. Daniel Rozbeský se snaží s týmem v BIOCEVU zjistit na úrovni atomů, jak takovéto velké množství kontaktů mezi nervovými buňkami vzniká.

„Zkoumáme, jakým způsobem mění výběžky nervových buněk směr a jak vědí, kdy je potřeba zahnout vlevo nebo vpravo. Molekuly, které studujeme, hrají důležitou roli v některých formách epilepsie, autismu a neurodegenerativních a nádorových onemocnění. Existuje tedy možnost, že by výsledky našeho výzkumného projektu JUNIOR STAR mohly přispět k lepšímu pochopení mechanismů těchto závažných nemocí, a pomoci tak k jejich léčbě,“ říká slovenský biochemik Daniel Rozbeský, kterého téma výzkumu napadlo během jeho sedmiletého postdoktorského pobytu na Oxfordské univerzitě. Po studiu se rozhodl vrátit zpět do České republiky, kde původně studoval na Přírodovědecké fakultě Univerzity Karlovy, a založit vědeckou skupinu působící v Biotechnologickém a biomedicínském centru Akademie věd a Univerzity Karlovy BIOCEV ve Vestci.


Mgr. Daniel Rozbeský, Ph.D.
Mgr. Daniel Rozbeský, Ph.D.

HYDRODYNAMICKÉ INTERAKCE PLANET S PROTOPLANETÁRNÍMI DISKY A PŮVOD TĚSNÝCH EXOPLANETÁRNÍCH SOUSTAV

RNDr. Ondřej Chrenko, Ph.D., Matematicko-fyzikální fakulta Univerzity Karlovy

„Snažíme se porozumět procesům, které vedly ke zrodu exoplanet nízkých hmotností obíhajících v těsné blízkosti mateřských hvězd.“

Projekt JUNIOR STAR Ondřeje Chrenka se zabývá vznikem planetárních soustav. Planety vznikají v tzv. protoplanetárních discích, což jsou oblaky plynu a prachu ve vesmíru, které rotují kolem vznikající nebo právě zformované hvězdy. Během této vývojové fáze se planety a disk vzájemně gravitačně ovlivňují a planety pak mohou migrovat, tedy přibližovat se ke své mateřské hvězdě nebo se od ní vzdalovat. Samotný průběh migrace planet tedy přímo určuje, jaké bude po rozplynutí disku výsledné uspořádání planetárních oběžných drah. Z protoplanetárního disku vznikla před 4,56 miliardami let rovněž sluneční soustava, ve které se nachází planeta Země.

„Pro výzkum používám simulace na superpočítačích, s jejichž pomocí modeluji proudění a energetické procesy v plynném disku s vnořenými planetami. Mým cílem je popsat fyzikální procesy, které jsou určující pro průběh migrace planet,“ říká astronom Ondřej Chrenko působící na Matematicko-fyzikální fakultě Univerzity Karlovy a dodává: „Téma výzkumu, kterým se zabývám, nemá na vědeckých institucích v České republice příliš široké zastoupení, takže je potřeba spojit se s velkými zahraničními výzkumnými skupinami věnujícími se dlouhodobě tomuto tématu. Proto si cením toho, že mi grant Junior Star umožní realizovat stáže na zahraničních pracovištích, a rozvíjet tak mezinárodní spolupráci, která nepochybně zvýší kvalitu výsledků projektu.“

Projekt si klade za cíl objasnit původ některých soustav exoplanet, které jsou pozorovány v naší galaxii, zejména se zaměří na početnou skupinu exoplanet nízkých hmotností (tzv. superzemě a minineptuny) obíhajících v těsné blízkosti svých mateřských hvězd. Výsledky výzkumu přispějí k pochopení podmínek, za kterých exoplanety doputovaly na těsné oběžné dráhy v důsledku migrace. Porozumění migraci je důležité rovněž v souvislosti s otázkou, zda na pozorovaných exoplanetách mohly krátce po jejich vzniku panovat podmínky potřebné pro vznik života.


RNDr. Ondřej Chrenko, Ph.D.
RNDr. Ondřej Chrenko, Ph.D.

LEWISOVY KYSELINY A FRUSTROVANÉ LEWISOVY PÁRY PRO REDUKČNĚ KONDENZAČNÍ REAKCE OXIDU UHLIČITÉHO S AMINY

Mgr. Martin Hulla, Ph.D., Přírodovědecká fakulta Univerzity Karlovy

„Projekt hledá možnosti využití oxidu uhličitého s cílem zmírnit nežádoucí dopad chemického průmyslu na životní prostředí, a usiluje tak o rozvoj udržitelné chemie.“

Chemický průmysl, založený na využívání fosilních zdrojů, poškozuje životní prostředí a prohlubuje naši závislost na neobnovitelných zdrojích energie. Podpořený projekt JUNIOR STAR má potenciál tuto závislost snížit. Zkoumá totiž recyklaci chemického odpadu – oxidu uhličitého, který produkuje zejména průmysl a obchod. Oxid uhličitý se uvolňuje do ovzduší při každém spalování, což vede k jeho značnému nárustu v atmosféře, a tím ke změně klimatu. Oxid uhličitý je však možné využít v chemickém průmyslu jako zdraví neškodný zdroj uhlíku, a tím pomoci snížit emise.

Cílem projektu Martina Hully je narušit chemické vazby oxidu uhličitého tak, aby byl dále komerčně využitelný a bylo díky tomu možné nahradit nebezpečné látky v průmyslu.

„Syntetická chemie je trochu jako hra s legem, kde oxid uhličitý představuje kus stavebnice o třech dílech – dva atomy kyslíku a jeden atom uhlíku. Oxid uhličitý je částečně využitelný k přípravě jakékoliv chemikálie obsahující alespoň jeden z těchto tří atomů. My se soustředíme na přípravu látek s primárním využitím ve farmakologickém a agrochemickém průmyslu, kde by oxid uhličitý mohl nahradit řadu velmi jedovatých látek, jako je například formaldehyd. V rámci výzkumu se proto snažíme vyvinout katalyzátory, tedy látky, které by chemické reakce urychlily,“ přibližuje projekt Martin Hulla z Přírodovědecké fakulty Univerzity Karlovy. Má za sebou již několik vědeckých úspěchů. V Oxfordu spolupracoval na přeměně bioodpadu na letecké palivo a v Cambridge se podílel na výzkumu ohebných obrazovek do mobilů a televizí, ve Švýcarsku zase na přeměně plastového odpadu na chemické zdroje. Poslední zmiňovaný výzkum měl blízko k předmětu jeho současného projektu JUNIOR STAR – recyklaci oxidu uhličitého.


Mgr. Martin Hulla
Mgr. Martin Hulla, Ph.D.

 

SOUVISEJÍCÍ ČLÁNKY

Matematici využili numeračních systémů k porozumění kvadratickým formám

V roce 1770 proslulý francouzský matematik Joseph-Louis Lagrange dokázal, že každé přirozené číslo lze zapsat jako součet čtyř čtverců. Tedy pro každé přirozené n existují taková celá čísla a, b, c, d, že platí rovnost n= a^2+b^2+c^2+d^2. Takzvaná Lagrangeova věta o čtyřech čtvercích se zapsala do dějin matematiky.

O tři staletí později se kvadratické vzorce staly základem zkoumání vědeckého týmu pod vedením Mgr. Vítězslava Kaly, Ph.D., z Matematicko-fyzikální fakulty Univerzity Karlovy. Hlavním tématem projektu financovaného GA ČR bylo zkoumání takzvaných univerzálních kvadratických forem.

„Jde o velmi důležité téma v teorii čísel, které souvisí s celou řadou jiných matematických oblastí, od matematické analýzy až po post-kvantovou kryptografii. A právě proto mě baví se tomuto tématu věnovat. Líbí se mi totiž, jak kombinuje a propojuje složité teorie k řešení zdánlivě jednoduchých otázek,“ komentuje Vítězslav Kala, proč si vybral téma projektu s názvem Kvadratické formy a numerační systémy nad číselnými tělesy.

Cílem tohoto projektu bylo studovat univerzální formy nad číselnými tělesy, což jsou jistá rozšíření celých čísel například o komplexní odmocninu z -1. Jedním z klíčových nástrojů, které k tomu tým použil, byly numerační systémy. „Jeden numerační systém známe a používáme všichni: desítkovou soustavu. Pro mnohé otázky, ať už týkající se již zmíněných číselných těles nebo implementace v počítačích, je ale důležité pracovat s výrazně obecnějšími soustavami, tak jako jsme to dělali v rámci projektu,“ vysvětluje Kala.

V jeho týmu pracovali tři postdoci – Tomáš Hejda a Tomáš Vávra, kteří se věnovali zejména stránce numeračních systémů, a také analytický číselný teoretik Ezru Waxman z USA. „Také mám radost, že se mi povedlo do výzkumu zapojit řadu studentů, jak mé dva doktorandy, tak několik magisterských, ale i bakalářských studentů Matfyzu. V rámci Studentského semináře z teorie čísel dokázali několik pěkných výsledků, které vyšly ve dvou článcích v dobrých zahraničních časopisech,“ zdůrazňuje dr. Kala, jehož projekt byl hodnotiteli Grantové agentury České republiky hodnocen jako vynikající.

„Hlavní výzvou byla matematika jako taková: To, že typicky vůbec není jasné, z které strany se do problému zakousnout, abychom ho vyřešili. A také to, že člověk musí být smířený, že spousta věcí, které zkusí, nakonec vedou do slepé uličky.“

Jedním z klíčových nástrojů, které tým při řešení projektu používal, jsou tzv. kvadratické mříže. Ty přitom slouží jako základ pro post-kvantovou kryptografii, tedy šifrování, které odolá útokům kvantových počítačů. „V rámci práce na projektu jsme získali výborné porozumění těmto mřížím, možná lepší, než nakolik jim rozumí někteří kryptografové z praxe. V nejbližších pár letech se tedy chci věnovat i souvisejícím kryptografickým otázkám, jejichž praktické dopady by pak byly zcela zásadní,“ naznačuje Vítězslav Kala využití některých výsledků projektu v praxi.

Od letošního ledna Mgr. Vítězslav Kala, Ph.D., řeší pětiletý projekt JUNIOR STAR, který je také financovaný Grantovou agenturou České republiky. „V jeho rámci chci výrazně prohloubit dosavadní porozumění univerzálním formám a propojit je s dalšími klíčovými objekty v teorii čísel, jako jsou třídová čísla. Jedná se o velký a ambiciózní projekt. Kdyby se nám to s mými čtyřmi postdoky povedlo, mohlo by to být vskutku přelomové,“ věří Vítězslav Kala.

Mgr. Vítězslav Kala, Ph.D.Mgr. Vítězslav Kala, Ph.D., absolvoval Matematicko-fyzikální fakultu Univerzity Karlovy, následně strávil 4 roky na doktorském studiu v USA na Univerzitě Purdue. Poté působil několik let jako postdok v Bonnu a Göttingenu v Německu, než se v roce 2017 vrátil na Matfyz. Ve svém výzkumu se zaměřuje na teorii čísel a související oblasti algebry a rád do něj zapojuje i studenty. Vedle řešení grantů aktuálně působí v GA ČR také jako místopředseda hodnoticího panelu Matematika a informatika.

SOUVISEJÍCÍ ČLÁNKY

Jeseteři jsou na pokraji vyhynutí, pomoci mohou klony

Jeseteři žijí na naší planetě již od dob dinosaurů a zachovali si některé archaické a dnes již mezi ostatními obratlovci unikátní znaky. Přestože jsou jeseteři evolučně velmi úspěšní, čelí dnes vyhynutí. V tzv. červené knize ohrožených zvířat je 16 z 27 druhů jeseterů klasifikováno jako kriticky ohrožení.

„Evidentně je na vině člověk, který při honbě za kaviárem vydrancoval většinu jeseteřích populací. Nemalou měrou je na vině rovněž znečištění vodních toků a výstavba přehrad, které brání jeseterům při jejich migracích za reprodukcí. Proto jsme se začali zabývat vývojem metod, které mají za cíl ochranu a genetickou konzervaci jeseterů,“ říká doc. Ing. Martin Pšenička, Ph. D., z Fakulty rybářství a ochrany vod Jihočeské univerzity v Českých Budějovicích, který vedl projekt podpořený Grantovou agenturou České republiky s názvem „Jaderný transfer u ryb: šance pro obnovení mizejících druhů jeseterů.”

Oplození somatickou buňkou

Vědci se vydali dvěma směry. Prvním byl klasický jaderný transfer. Podstata metody je jednoduchá. Vezme se buňka ohroženého druhu jesetera, například z ploutve, a injikuje se do vajíčka náhradního blízkého druhu. Vajíčko je tedy „oplozeno“ nikoliv spermií, ale somatickou buňkou. Vajíčko z nějakého důvodu pozná, že je přítomná buňka diploidní (obsahuje kompletní informaci ke vzniku jedince) a genetickou informaci vajíčka vyloučí. Výsledný organismus je klon, který má jadernou genetickou informaci pouze somatické buňky donora. Druhým směrem bylo využití unikátního fenoménu polyspermie u jeseterů, tedy oplození jednoho vajíčka více spermiemi.

Rýhování embya jesetera maléhoRýhování embya jesetera malého

„Tato vlastnost by mohla být využita k obnově druhu pouze ze spermie a vajíčka náhradního druhu. Zde je nutné si uvědomit, že vajíčka ryb nepřežívají zamražení. Uchování genetického materiálu ve zmraženém stavu lze tedy pouze v podobě spermií či buněk,“ vysvětluje doc Pšenička.

Hlavní výzvou při řešení projektu bylo zvýšení životaschopnosti výsledných klonů. Na jednu stranu je totiž tato metoda u ryb velmi zvýhodněna externím oplozením a vývojem, ovšem na druhou stranu mají klonované ryby obecně velmi malé přežití, a to včetně modelových druhů, jako jsou dánio pruhované, karas obecný nebo medaka japonská. U těchto druhů lze získat okolo 20 % embryí, přičemž nejlepšího výsledku bylo dosaženo při získání cca 2 % dospělců. „V naší práci se nám po řadě optimalizací podařilo získat přes 60 % embryí u různých druhů jeseterů. Bohužel po stadiu blastuly přicházely další velké ztráty,“ říká Martin Pšenička.

Životaschopné hybridy

Velkým překvapením pro vědecký tým bylo zjištění, že po vniknutí více spermií do vajíčka se embrya normálně vyvíjela. Po analýze vzniklých polyspermních embryí vědci zjistili, že jedna spermie splyne s prvojádrem vajíčka a vytvoří zygotu, jedna až tři spermie vytvoří blastomery (embryonální buňky), které se vyvíjí samostatně s genetickou informací pouze od otce a další spermie (až desítky) zanikají. Část buněk nesoucí pouze otcovskou jadernou genetickou informaci se diferencuje do zárodečných buněk, a předává tak (zatím jen teoreticky) genetickou informaci do další generace. „Pokud víme, tak se jedná o unikátní mechanismus oplození. Tento objev nám dal možnost vytvořit první životaschopné hybridy, vzniklé ze tří rodičů různých druhů: jesetera ruského, jesetera sibiřského a jesetera malého. Jeden potomek tak měl jednu matku a dva otce, kde spermie jednoho druhu fúzovala s prvojádrem vajíčka druhého druhu (diploidní linie) a spermie třetího druhu vytvořila samostatnou klonální haploidní linii,“ vysvětluje docent Pšenička.

Jeseter_malyJeseter malý

Jesetery lze klonovat

Nejdůležitějším závěrem projektu je, že jesetery lze klonovat, tedy obnovit genomovou informaci jedince z neinvazivně odebrané somatické buňky. Tyto buňky lze bez problémů dlouhodobě uchovávat zamražené v tekutém dusíku.

Rozhodujícím krokem optimalizace jaderného transferu byla zdánlivá maličkost, množství buněk potažmo jader somatických buněk, které byly injikovány do vajíčka. Se zvyšujícím se počtem buněk se zvyšovalo i přežití klonů.

Tuto schopnost vajíčka akceptovat více jader lze přirovnat ke schopnosti akceptovat více spermií – polyspermii.

Centrum výzkumu jeseterů

Ve Francii a Německu vědci pracují na ochraně a obnově jesetera velkého, který byl mimochodem i původním druhem v České republice. Nyní je tento druh, jako řada dalších, na pokraji vyhynutí. Zahraniční vědci dlouhodobě podněcovali myšlenku aplikace jaderného transferu na jesetery. „Kolegové ve Francii mají již dlouholeté zkušenosti s jaderným transferem u karasa obecného, ale na práci s jesetery nemají zázemí. Naše laboratoř s nimi na toto téma navázala spolupráci a domluvili jsme se, že metodu přeneseme na jesetery. Máme ve Vodňanech unikátní sbírku jedenácti druhů jeseterů a mezi nimi i jesetera malého, kterého jsme si zvolili jako modelový druh,“ uvádí doc. Pšenička. Tato ryba dospívá relativně brzy (4-5 let) a jak jeho druhový název napovídá, tak má relativně nízké nároky na prostor. Na Fakultě rybářství a ochrany vod zvládají výtěr této ryby od ledna až do června, což otevřelo možnosti širokého výzkumu. Díky tomu se tým vědců pod vedením doc. Martina Pšeničky dostal do povědomí řady výborných vývojových biologů z celého světa, kteří s ním nyní navazují spolupráci. Fakulta rybářství a ochrany vod se tak stala jakýmsi celosvětovým centrem výzkumu jeseterů.

doc. Ing. Martin Pšenička, Ph.D. se narodil 17. ledna 1981 v Karlových Varech. Vystudoval Střední rybářskou školu v Třeboni a následně Jihočeskou univerzitu v Českých Budějovicích, obor všeobecné zemědělství se specializací rybářství. Studium prohluboval dále na Univerzitě Hokkaido v Japonsku. Od roku 2010 působí jako akademický pracovník na Fakultě rybářství a ochrany vod na Jihočeské univerzitě v Českých Budějovicích a je zde vedoucím Laboratoře zárodečných buněk. Je hlavním pořadatelem významných mezinárodních konferencí a také hostujícím editorem v časopise Journal of Applied Ichthyology, Fish Physiology and Biochemistry a International Journal of Molecular Sciences.

Na úvodním obrázku: Larva jesetera malého.

SOUVISEJÍCÍ ČLÁNKY

Nové vodivé polymery pro efektivnější skladování energie

Převrat ve vývoji flexibilních materiálů pro použití v elektronice a uchovávání energie si vědci slibují od nových originálních materiálů na bázi polymerů. Ty jsou dnes díky přípravě z dostupnějších surovin, smíšené elektronové a iontové vodivosti a možnosti modifikace vodivosti a stability považovány za kandidáty na efektivnější elektrody pro baterie a kondenzátory.

Rozvíjející se elektronika a požadavky na ekologičtější energetické aplikace stimulují vývoj nových materiálů pro baterie, superkondenzátory, palivové a solární články. Vědcům z Ústavu makromolekulární chemie AV ČR (ÚMCH AV ČR) se nyní v rámci tříletého projektu podařilo připravit nové vodivé materiály na bázi polymerů ve formě prášků, tenkých vrstev, kryogelů a hybridních kompozitů s funkcemi vhodnými hlavně pro elektrodové materiály pro přeměnu a skladování energie a katalýzu. „Během řešení projektu se ukázalo, že získané porézní materiály můžou být také využité jako adsorbenty nebo antibakteriální materiály,“ říká Dr. Patrycja Bober, vedoucí Oddělení vodivých polymerů v ÚMCH AV ČR. Výsledky výzkumu byly publikovány v renomovaných impaktovaných vědeckých časopisech: Journal of Materials Chemistry C, Journal of Colloid and Interface Science, Macromolecular Rapid Communications, Polymer apod. Celkem bylo publikováno 12 článků.

Polypyrol cryogel připravený s želatinouPolypyrol cryogel připravený s želatinou (vlevo) a ilustrace makroporézního morfologie odpovídajícího aerogelu (vpravo).

Hlavní komplikací úspěšného projektu bylo nalezení optimální doby kryopolymerace pro získání maximálního výtěžku připraveného polymeru v kryogelech a optimalizaci technologie čištění. „Kryopolymerace je velmi pomalý proces. Nyní již víme, že nám na ni stačí jeden týden, ale čištění materiálů trvá přibližně 3 měsíce. Bohužel, další komplikace nastala během pandemie, kdy jsme si museli zvyknout na komunikaci na dálku a na online schůzky namísto osobního jednaní a diskuzí nad výsledky,“ objasňuje Dr. Patrycja Bober.

Na vývoji nových vodivých materiálů spolupracovali vědci z ÚMCH se zahraničními kolegy z rakouského Wood KPlus – Kompetenzzentrum Holz GmbH, ze slovenského Ústavu polymérov SAV a ze srbské University of Belgrade. „Také jsme úzce spolupracovali se skupinou prof. Ing. Petra Humpolíčka, Ph.D., z Centra polymerních systémů Univerzity Tomáše Bati ve Zlíně. Během zkoumání biologických vlastností makroporézních a vodivých kryogelů jsme společně zjistili, že polypyrrolové kryogely stabilizované želatinou vykazují významný antibakteriální účinek bez dalších antibakteriálních látek, což je velmi slibné pro jejich potenciální využití také v biomedicínských aplikacích,“ popisuje Dr. Patrycja Bober.

Nově získané poznatky včetně jednokrokového kryopolymerizačního postupu nyní vědci využijí v rámci řešení dalšího projektu, podpořeného Grantovou agenturou ČR, který se věnuje přípravě a charakterizaci inovativních vysoce porézních vodivých polymerních materiálů a jejich kompozitů pro degradaci organických barviv, léčiv nebo těžkých kovů z odpadních vod.

Ing. Patrycja Bober, PhD.Ing. Patrycja Bober, Ph.D., je vedoucí Oddělení vodivých polymerů v Ústavu makromolekulární chemie Akademie věd České republiky. Po absolvování doktorského studia v oboru makromolekulární chemie na Přírodovědecké fakultě Univerzity Karlovy strávila šest měsíců na finské Åbo Akademi University. Se svou skupinou se věnuje přípravě vodivých polymerů a kompozitu chemickou oxidací nebo elektrochemickou polymerací s ohledem na řízení polymerní morfologie s vysokou elektrickou vodivostí. Její tým spolupracuje s řadou pracovišť v České republice a zahraničí (Rakousko, Srbsko, Finsko, Slovensko, Singapur apod.) v oblasti aplikací připravených materiálů.

Autor: Ústavu makromolekulární chemie AV ČR, na úvodní fotce vědecký tým Dr. Patrycje Bober v ÚMCH AV ČR

SOUVISEJÍCÍ ČLÁNKY

Mikulovice u Pardubic – pohřebiště z počátků doby bronzové na Jantarové stezce

V letech 2007–2009 prozkoumali archeologové z Archeologického ústavu AV ČR, Praha, v. v. i., a Východočeského muzea v Pardubicích v lokalitě Mikulovice u Pardubic několik skupin kostrových hrobů z počátků doby bronzové, z období ca 2200–1700 před Kristem. Záhy se ukázalo, že zdejší pohřebiště je pravým zlatým dolem, a to nejen bohatstvím pohřebních výbav místních nebožtíků, ale zejména nepřeberným množstvím zcela unikátních informací o tomto období.

Staletí kolem a po roce 2000 před Kristem jsou v celoevropském kontextu spojována s počátky bronzové metalurgie a rozvojem dálkového obchodu a nadregionálních kontaktů všeho druhu. Jak znalost poměrně vyspělé metalurgie, tak široké spektrum jejích produktů v podobě stovek typů bronzových předmětů, se během několika desetiletí rozšířily téměř do všech koutů tehdy známého světa. V této klíčové době patřilo území dnešních Čech, spojované s tzv. Únětickou archeologickou kulturou, spolu s oblastmi jižní Anglie (kultura Wessex) a jihovýchodního Španělska (kultura El Argar) k nejvyspělejším oblastem evropského kontinentu a jeho tehdejší obyvatelé udávali po několik staletí tón společenskému, hospodářskému a politickému vývoji celé širší střední Evropy.


Mikulovice u Pardubic, dokumentace jednoho z hrobů
Mikulovice u Pardubic, dokumentace jednoho z hrobů

Na rozsáhlém území mezi německým Harzem, polským Slezskem a jihozápadním Slovenskem, kde se s památkami Únětické kultury setkáváme, jsou dnešní Čechy množstvím i kvalitou nálezů nepochybně regionem nejbohatším. To se týká i charakteristických kostrových pohřebišť té doby. Naši předkové na nich pohřbívali své mrtvé ve skrčené poloze, na pravém boku, hlavou k jihu a obličejem k východu. Někdy je ukládali do jednoduchých obdélných hrobových jam, často ale najdeme i opravdové kamenné hrobky se složitou konstrukcí, dlážděným dnem, zděnými stěnami a stropem z rozměrných kamenných bloků. Právě dvě taková bohatá kostrová pohřebiště, prozkoumaná již v roce 1879 poblíž Únětic nedaleko Prahy lékařem z blízkých Roztok, Čeňkem Ryznerem, dala také ještě v 19. století jméno celé archeologické kultuře – Únětická. I když se regionální skupiny Únětické kultury na obrovském území jejího rozšíření navzájem v lecčems liší, společný habitus jim dává mimo jiné právě shodný pohřební ritus i velmi typické formy společně se vyskytujících předmětů, nádob, šperků atd.

Jednou z významných odlišností území dnešních Čech od všech sousedních oblastí je masový výskyt jantaru v hrobech zdejších obyvatel. Zejména v těch ženských často nacházíme nádherné jantarové náhrdelníky. Jantar je na našem území jednoznačně cizího (baltského) původu a je proto významným dokladem nadregionálních kontaktů příslušníků zdejších “starobronzových“ populací. Zatímco ze sousedních oblastí (střední Německo, polské Slezsko, Morava) známe nanejvýš několik málo desítek pohřbů s jantarem, přítomném nejčastěji jen v jediném hrobě na celém pohřebišti, máme dnes z území Čech k dispozici více než 320 hrobů obsahujících jantarové šperky – výjimkou není ani deset a více na jednom pohřebišti – s desítkami i stovkami jantarových šperků.


Mikulovice u Pardubic, repliky honosných jantarových náhrdelníků z ženských hrobů č. 2 (vpravo) a 36 (vlevo).
Mikulovice u Pardubic, repliky honosných jantarových náhrdelníků z ženských hrobů č. 2 (vpravo) a 36 (vlevo).

Z celkového obrazu svým bohatstvím vyčnívá právě pohřebiště v Mikulovicích. S téměř 900 jantarovými předměty identifikovanými ve 27 zdejších hrobech jsou Mikulovice na jantar nejbohatší lokalitou v celém únětickém světě a jednou z nejbohatších v soudobé Evropě vůbec. Jantarové náhrdelníky, které patří na našem území k typickým ženským šperkům, se tu našly ve více než 40 % všech ženských hrobů, což je extrémní množství. Hrob ca 35 let staré ženy č. 2 je se svým nádherným náhrdelníkem složeným z více než 400 jantarových perel dokonce vůbec nejbohatším hrobem obsahujícím jantar známým z celé tehdejší Evropy. Právě toto extrémní bohatství bylo významným impulzem k vědecké analýze a publikaci této nekropole v rámci mezinárodního interdisciplinárního projektu finančně podpořeného grantem GA ČR.

Archeologie stále intenzivněji spolupracuje s nejrůznějšími přírodními vědami. Zdaleka už nejde jenom o radiokarbonové datování nebo chemické složení kovových předmětů. V poslední době jsou to zejména analýzy tzv. mobilitních (Sr a O) a výživových (C a N) izotopů, pomáhající mapovat možné oblasti původu a stravovací návyky našich předků, a samozřejmě analýzy aDNA. S rozšiřujícím spektrem využívaných metod se vyvíjí i metodika a “filosofie“ jejich využívání. Výzkum rychle směřuje od analýz jednotlivých případů k multidisciplinárním projektům zkoumajícím a interpretujícím celé komplexy dat – v našem případě celá pohřebiště, celé pravěké komunity. To je i případ projektu vědeckého vyhodnocení pohřebiště v Mikulovicích.


Mikulovice u Pardubic, hrob ca 35ti leté žerny č. 2 s honosnými šperky – jantarovým náhrdelníkem, bronzovými náramky, jehlicemi a zlatými ozdobami vlasů. Jde o nejbohatší známý hrob s jantarovými šperky z celé tehdejší Evropy.
Mikulovice u Pardubic, hrob ca 35ti leté žerny č. 2 s honosnými šperky – jantarovým náhrdelníkem, bronzovými náramky, jehlicemi a zlatými ozdobami vlasů. Jde o nejbohatší známý hrob s jantarovými šperky z celé tehdejší Evropy.

Ne všechny potřebné analýzy je možné nebo účelné provádět na pracovištích v ČR. Spolupracujeme proto i s řadou renomovaných zahraničních institucí a kolegů, často nositelů ERC gratů. Za jiné stojí za zmínku univerzity v Bristolu či Helsinkách (prof. V. Heyd, analýzy tzv. mobilitních izotopů stroncia a kyslíku), Curt-Engelhorn-Zentrum Archäometrie v Mannheimu (prof. E. Pernicka, prof. R. Schwab a další, materiálové analýzy, radiokarbonové datování), tým Dr. W. Haaka na Max Planck Institute for the Science of Human History v Jeně nebo tým prof. D. Reicha na Harvardu (analýzy aDNA, paleopatologie atd.). Nicméně na našem výzkumu se samozřejmě podílela i řada pracovišť z ČR, v čele s kolegyněmi a kolegy z několika ústavů AV ČR (ÚJF v Řeži, Geologický ústav), Antropologického oddělení NM v Praze, České geologické služby, Přírodovědné fakulty UK v Praze, Anatomického ústavu Fakultní nemocnice v Brně-Bohunicích, Přírodovědecké fakulty UP v Olomouci nebo Ústavu archeologie a muzeologie FF MU v Brně.

Díky nadprůměrnému bohatství hrobů mikulovické starobronzové komunity, zejména výskytu importů, tedy předmětů, surovin či technologií prokazatelně cizího původu (např. zmíněný jantar), a také díky strategické geografické poloze, jsme už od počátku připisovali zdejší aglomeraci možnou roli klíčového uzlového bodu na významné dálkové komunikaci. Poloha na ní umožňovala přísun těchto komodit ve výrazně nadprůměrném množství. To dává tušit, že se zdejší komunita na provozu na této komunikaci patrně nějakým způsobem podílela – někteří její příslušníci z její existence významně profitovali. Opět bych tu připomněl ženu z hrobu č. 2, pohřbenou kromě pěti bronzových náramků, tří bronzových jehlic a dvou zlatých vlasových ozdob také s již výše zmíněným nádherným jantarovým náhrdelníkem složeným z více než 400 jantarových perel a několika tzv. rozřaďovačů, vzácných jantarových kamenů s vícenásobným paralelním vrtáním, které sloužily nejen jako ozdoba, ale také k udržování odstupu mezi celkem třemi řadami jantarových korálů.


Mikulovice u Pardubic, zlaté vlasové šperky z bohatého ženského hrobu č. 2.
Mikulovice u Pardubic, zlaté vlasové šperky z bohatého ženského hrobu č. 2.

Zejména dvojité a trojité rozřaďovače činkovitého tvaru jsou svým tvarem zcela výjimečné a nezaměnitelné, svědčící o mimořádné zručnosti a invenci svého výrobce/designera. Tyto svým tvarem nezaměnitelné artefakty známe jen ze čtyř soudobých bohatých ženských hrobů, tří na území Čech a čtvrtého, prozkoumaného nedaleko naší severní hranice. Všechny byly součástí nádherných jantarových náhrdelníků s velmi podobným designem – jeden ústřední, obdélný či okrouhlý kámen s vícenásobným paralelním vrtáním byl doplněn několika činkovitými rozřaďovači s vícenásobným paralelním vrtáním a dvěma nebo třemi šňůrami drobných jantarových perel. Šlo o záměrně vyrobené a sestavené honosné jantarové šperky, složené ze standardizovaných setů rozřaďovačů doplněných dvěma či třemi šňůrami jednoduchých perel. Náhrdelníky vznikly mezi léty 2000–1800 před Kristem ve specializované šperkařské dílně působící někde na území středních Čech a byly určeny pro významné zákazníky/zákaznice, ženy, stojící na vyšších stupíncích tehdejší únětické sociální hierarchie.

A jak se poloha aglomerace na významné dálkové komunikaci a příliv exotického zboží odrazily v životě mikulovické komunity? Zdejší populaci můžeme charakterizovat, pro někoho možná překvapivě, jako typicky zemědělskou, s homogenním signálem stravovacích návyků odpovídajících konzumaci běžného spektra plodin (zejména pšenic – dvouzrnky, jednozrnky a špaldy) i domácích zvířat (tura, prasat, ovcí/koz) své doby. Doloženo je komplexní využívání okolního přírodního prostředí, které v blízkosti aglomerace charakterizujeme jako suché, spíše otevřené stanoviště, patrně bez výskytu zapojeného lesa, s podmínkami vhodnými k provozování zemědělské činnosti. Zdejší sídelní aglomeraci, jejíž rozsah odhadujeme na ca 60 ha, měla patrně zcela odlesněnou a intenzivně multifunkčně využívanou a částečně zastavěnou centrální plochu, lemovanou zemědělsky obhospodařovanou půdou postupně přecházející v místy řidší lesní porosty. Antropologické a paleopatologické analýzy nás poněkud překvapivě informují o daleko horším zdravotním stavu a větších zdravotních problémech zdejších obyvatel, než by se mohlo zdát na základě výsledků dosavadního výzkumu. Pomineme-li některá běžnější, často zhojená zranění i výjimečné případy s fatálními následky, překvapuje na první pohled zejména vysoký podíl jedinců s možnými stopami TBC na kostech, ale i poměrně vysoký podíl kloubních či zánětlivých onemocnění, vrozené skoliózy nebo potravinové nedostatečnosti. Také stopy intenzivní, opakující se pracovní činnosti na zubech několika skeletů patří mezi výjimečná zjištění. Již zmíněné analýzy tzv. výživových izotopů uhlíku a dusíku neindikují téměř žádnou sociální stratifikaci. Pouze dva skelety (dvojhrob muže a ženy) vykazují výrazně odlehlé hodnoty naznačující častější konzumaci masa. Zatímco muž byl patrně původem z regonu, žena byla pomocí analýzy tzv. mobilitních izotopů stroncia a kyslíku jednoznačně identifikována jako “cizinka“. Jejich obecně vyššímu sociálnímu postavení v rámci komunity však na druhé straně neodpovídá množství ani kvalita milodarů z jejich hrobu. Tím se dostáváme k relativně nízkému podílu tzv. imigrantů, jedinců cizího původu, pochovaných společně s “místními“ příslušníky zdejší populace, kterou prof. Heyd charakterizuje jako převážně lokální, usedlou společnost bez výraznějších signálů běžnější mobility, přičemž i většina jedinců pohřbených s importovanými artefakty jsou místní. Zatímco jedinců pocházejících z výrazně větších vzdáleností (mimo území dnešních Čech) nebylo v Mikulovicích pohřbeno více než ca 10 %, najdeme ve zdejším vzorku statisticky významný signál větší regionální mobility žen, nežli mužů a zejména dětí, která je doložena i z dalších oblastí Evropy a bývá běžně interpretována jako jeden z dokladů ženská exogamie.


Mikulovice u Pardubic, hrob ca 35ti leté žerny č. 2 s honosnými šperky – jantarovým náhrdelníkem, bronzovými náramky, jehlicemi a zlatými ozdobami vlasů. Jde o nejbohatší známý hrob s jantarovými šperky z celé tehdejší evropy.
Mikulovice u Pardubic, hrob ca 35ti leté žerny č. 2 s honosnými šperky – jantarovým náhrdelníkem, bronzovými náramky, jehlicemi a zlatými ozdobami vlasů. Jde o nejbohatší známý hrob s jantarovými šperky z celé tehdejší evropy.

Na pohřebišti v Mikulovicích byli tedy pohřbíváni převážně příslušníci běžné, usedlé, lokální zemědělské komunity, žijící v centru relativně izolované, rozsáhlými neosídlenými oblastmi obklopené menší regionální skupiny únětické kultury, patrně běžně praktikující regionální ženskou exogamii. Základem její existence bylo zemědělství, pěstování běžných kulturních plodin a chov domácích zvířat. Analyzované hroby, zejména pak ženské, jsou ale plné importů všeho druhu, pocházejících z různých směrů a kulturních prostředí, ze vzdáleností až mnoha set km, a to v jinde nevídaném množství a kvalitě. To bylo s největší pravděpodobností způsobeno jednak polohou lokality na významné dálkové komunikaci, z části pak také přímou participací některých příslušníků zdejší komunity na provozu na této komunikaci.

Sedmisetstránkovou vědeckou publikací z per více než třicítky autorů ze čtyř zemí ale náš výzkum nekončí. V současné době probíhají komplexní analýzy aDNA celé zdejší populace a nové vyhodnocení všech získaných informací a dat v tomto zcela unikátním kontextu. Takto komplexně a detailně prozkoumaná a analyzovaná komunita nemá totiž ve výzkumu evropské doby bronzové v současné době obdoby.

Autor textu: Michal Ernée, Archeologický ústav AV ČR, Praha, v. v. i.
Foto: Jarmila Koutová

SOUVISEJÍCÍ ČLÁNKY