Nová metoda dokáže zobrazit jednotlivé molekuly v biologické tkáni

Zárodek budoucího života nebo počátek onemocnění mají jedno společné: začínají na úrovni chemických reakcí jednotlivých molekul. Týmu Jana Preislera z Ústavu chemie Přírodovědecké fakulty Masarykovy univerzity se v rámci výzkumu podpořeného Grantovou agenturou ČR (GA ČR) podařilo vyvinout metodu, díky které můžeme v tkáni současně lokalizovat jednotlivé biologicky důležité molekuly a přispět tak k porozumění biologickým procesům.

Detekce molekul nebo atomů lákala vědce od nepaměti. V současnosti existuje řada metod, které mají citlivost potřebnou pro jejich detekci, ovšem lokalizace těchto částic ve vzorku, například v tkáních organismů, a současné potvrzení jejich identity stále představuje jeden z nejnáročnějších úkolů chemické analýzy.

Metody používané pro zobrazení biologicky významných molekul v tkáních často využívají speciální značky, jako jsou například kvantové tečky nebo foton-upkonverzní či jiné nanočástice, které se nejprve navážou na cílové molekuly a poté jsou zobrazeny pomocí fluorescenční nebo elektronové mikroskopie. Tyto značky se obvykle vážou na specifické biomolekuly prostřednictvím specifických protilátek. Nevýhodou existujících zobrazovacích technik ovšem je, že mohou být použity pouze k zobrazení jednoho nebo několika málo typů biomolekul, protože dokáží rozlišit pouze omezený počet značek, a jejich citlivost také není vždy dostačující.

Hmotnostní spektrometrie a značení nanočásticemi

Pro mapování biomolekul v tkáních se často využívá hmotnostní spektrometrie. Jde o metodu, která dokáže velmi přesně změřit hmotnost atomových nebo molekulových iontů a na základě zjištěné hmotnosti je identifikovat. Přestože je hmotnostní spektrometrie velmi citlivá, její citlivost není dostatečná pro detekci jednotlivých atomů a molekul. Přímo je proto možné zobrazit pouze rozložení molekul, které jsou v zobrazované tkáni přítomny v dostatečném množství – například některých lipidů, proteinů, metabolitů a léčiv.

I hmotnostní spektrometrii je však možné využít k detekci biomolekul, které jsou v tkáni obsažené pouze v nepatrném množství, pokud biomolekuly označíme nanočásticemi. Například zlatá nanočástice o průměru 20 nm obsahuje zhruba 250 tisíc atomů zlata a nanočástice o průměru 100 nm dokonce přes 30 miliónů atomů zlata. Počet iontů zlata vytvořených z jediné nanočásticové značky tak může být o několik řádů vyšší než počet výchozích biomolekul.

Nanočásticové značky obsahující jeden nebo více kovových atomů mohou být detekovány pomocí hmotnostního spektrometru, který využívá k ionizaci indukčně vázané plazma o teplotě přes 6 000 °C. V prvním kroku dochází k tomu, že se pixel po pixelu pomocí ultrafialového pulzního laseru odpařují nanočástice specificky navázané na dané biomolekuly v tkáních. Z nanočástic tak vznikají obláčky atomů kovu, které jsou vedeny do plazmatu, kde se ionizují, a posléze jsou detekovány pomocí hmotnostního spektrometru. Výsledkem je mapa rozložení biomolekul ve studované tkáni.

přístroj

Zobrazení jednotlivých molekul pomocí nanočástic

Tým Jana Preislera z Ústavu chemie Přírodovědecké fakulty Masarykovy univerzity se zabývá tím, jak využit lasery k odpaření a ionizaci vzorků ve spojení s hmotnostní spektrometrií. Na pracovišti vyvinuli ablační systém, který namísto obvyklého ultrafialového laseru využívá laser infračervený, pomocí něhož dochází k šetrnému uvolňování neporušených 20nm zlatých nanočástic z tkáně a jejich transportu do plazmatu. Do plazmatu tak není přiveden difúzní obláček atomů zlata, ale neporušené zlaté nanočástice, které jsou atomizovány a ionizovány během velmi krátké doby až v samotném plazmatu.

Výsledkem jsou submilisekundové píky – krátké pulzy signálu iontů zlata. Není tak detekován pouze celkový signál kovu z daného pixelu, ale je možné jednotlivé nanočástice – a potažmo biomarkery na daném pixelu – přesně spočítat. Rozdíl v citlivosti oproti klasické laserové ablaci je proto podobný jako v případě měření intenzity světla v režimu počítání jednotlivých fotonů oproti obvyklému proporčnímu režimu.

Ve spolupráci s kolegy z Ústavu experimentální biologie Přírodovědecké fakulty Masarykovy univerzity a z Výzkumného centra automatické manipulace Fakulty strojního inženýrství Vysokého učení technického v Brně výzkumníci demonstrovali přednosti nové metody při monitorování bujících buněk v 3D agregátech buněk lidského kolorektálního karcinomu.

Výsledkem přesného počítání značek na každém pixelu jsou ostré distribuční mapy relevantního biomarkeru v tkáni. Navíc jsou silně potlačeny signály z oblastí mimo tkáň. Tento přístup může být vhodný i pro současné zobrazení desítek různých biomolekul pomocí značek obsahujících různé kovy, případně i směsi kovů, protože hmotnostní spektrometr dokáže ionty těchto kovů snadno identifikovat a kvantifikovat.

Kromě ionizace v indukčně vázaném plazmatu tým studuje i možnost použití přímé laserové desorpce a ionizace nanočástic. V tomto případě se daří účinně detekovat 100nm zlaté nebo stříbrné nanočástice. Vyvinuté technologie jsou výsledkem téměř desetiletého pracovního úsilí týmu podpořeného několika navazujícími projekty GA ČR. Součástí výzkumu byl vývoj speciální instrumentace a softwaru pro záznam, vyhodnocování a zobrazení dat. Výzkum byl publikován v předním časopise oboru a ve schvalovacím řízení je patentová přihláška na vyvinutou metodu.

prof. Mgr. Jan Preisler, Ph.D.

prof. Mgr. Jan Preisler, Ph.D.

Jak vyzrát na obezitu pomocí FGF21?

Petr Zouhar z Fyziologického ústavu AV ČR zkoumal protein, který při delším podávání snižuje tělesnou hmotnost u myší. Snaží se zjistit, proč stejné účinky nemá také u lidí. Jeho výzkum byl podpořen juniorským grantem Grantové agentury ČR (GA ČR).

Aby lék fungoval, nemusíme vždy přesně rozumět mechanismu jeho účinku. To je i případ fibroblastového růstového faktoru 21 (FGF21 z angl. Fibroblast growth factor 21), nedávno odhaleného proteinového hormonu produkovaného v játrech a některých dalších orgánech, který ovlivňuje metabolické procesy po celém těle. Podávání FGF21 obézním laboratorním hlodavcům sice mimo jiné snižovalo jejich tělesnou hmotnost, u lidských dobrovolníků se ovšem slibné výsledky nepodařilo plně reprodukovat ani s použitím několika různých analogů proteinu FGF21. Proto vědci začali zkoumat, jak přesně FGF21 u myší funguje, a snaží se odhalit, proč selhává u lidí. Takový objev může naznačit cesty, jak by FGF21 mohl pomáhat snižovat obezitu i u lidí.

Tradiční představy o fungování FGF21 – výrobou tepla k hubnutí

Obezita je dána nerovnováhou mezi energetickým příjmem a výdejem. Lze proti ní proto bojovat jednak snížením příjmu potravy (ať už s pomocí diet, nebo nových léků ovlivňujících pocit sytosti), jednak zvýšením fyzické aktivity či klidového metabolického obratu. Významná část klidového energetického výdeje je (v závislosti na teplotě okolí) vynaložena na udržování stálé tělesné teploty. K tomu savci využívají celou paletu mechanismů, jako je například svalový třes nebo netřesová termogeneze. Ta probíhá zejména v takzvané hnědé tukové tkáni, která obsahuje speciální mitochondriální protein UCP1 (z angl. Uncoupling protein 1 čili odpřahovací protein 1). Právě tady zasahuje FGF21: jeho podávání zvyšuje u laboratorních zvířat expresi UCP1, energetický výdej i tělesnou teplotu. Může se tedy zdát, že stimulace UCP1 vede k nadbytečné výrobě tepla, což se projeví jednak spalováním tukových zásob, jednak zahřátím organismu a snahou ochladit se (Obr. 1). Jak ale zjistil výzkumný tým vedený Petrem Zouharem, situace je výrazně složitější.

Schéma fungování FGF21

Obr. 1: Schéma shrnující tradiční pohled na fungování FGF21 oproti novým poznatkům získaným v rámci projektu

Skeptický pohled – horečka bez hubnutí

Měření vědeckého týmu ukazují, že cílem FGF21 není zvýšit energetický výdej, ale spíše zvýšit tělesnou teplotu. Některá zvířata se po podání FGF21 nesnaží zbavovat přebytečného tepla, ale naopak snižují tepelné ztráty. FGF21 nepůsobí přímo na hnědou tukovou tkáň, ale ovlivňuje hlavně mozková centra řídící tělesnou teplotu a vyvolává jakousi horečku. Pod vlivem FGF21 se mozek všemi dostupnými cestami pokouší dosáhnout vyšší tělesné teploty. Může k tomu využít tvorbu tepla pomocí UCP1, ale může také snížit tepelné ztráty například omezením průtoku krve periferiemi těla. K tomu druhému dochází u geneticky modifikovaných myší bez UCP1 a může to být i případ lidských pacientů, kteří mají oproti hlodavcům UCP1 o dost méně. Pokud tedy FGF21 zvyšuje energetický výdej, dochází k tomu za účelem zvýšení tělesné teploty, ne naopak. A protože u myší hraje při regulaci tělesné teploty větší roli UCP1, zatímco lidé se spíše zahřívají jinak, myši po podávání FGF21 spalují více tukových zásob než lidé.

Nová naděje – dlouhodobé působení FGF21

Krátkodobé působení FGF21 může snadno vést ke zvýšené tělesné teploty kvůli snižování tepelných ztrát, a nemusí tak docházet k hubnutí. Lze ale tuto strategii uplatňovat dlouhodobě? Výsledky výzkumu ukazují, že už při týdenním podávání přestává tento trik stačit. I myši bez UCP1 začínají při takto prodloužené terapii zvyšovat svůj energetický výdej. Zajímavé ale je, jakým způsobem. UCP1 nemají, takže zbývá zapojit svalový třes nebo alternativní mechanismy netřesové termogeneze.

Existence těchto alternativních cest nezávislých na UCP1 v současnosti vzbuzuje velkou pozornost. Analýza genové exprese naznačuje, že FGF21 v hnědé tukové tkáni stimuluje aktivitu několika protichůdných energeticky náročných procesů včetně cyklu lipolýzy a produkce zásobních lipidů. Jestli lze touto cestou vyrobit dostatek tepla, zatím není zřejmé. Nárůst energetického výdeje je každopádně nižší než v případě zapojení UCP1.

Za povšimnutí stojí také, že navzdory menšímu nárůstu energetického výdeje ztrácí myši bez UCP1 hmotnost podobně jako kontrolní myši s UCP1. Děje se tak kupodivu proto, že FGF21 u těchto zvířat zároveň mírně tlumí příjem potravy. Zdá se tedy, že FGF21 ovlivňuje hned dva regulační mechanismy v centrální nervové soustavě – už při krátkodobém podávání posouvá rovnováhu mezi výrobou a ztrátami tepla s cílem zvýšit tělesnou teplotu. Při dlouhodobějším podávání pak FGF21 navíc ovlivňuje balanc mezi energetickým výdejem a příjmem, což má za následek pokles hmotnosti. Toto zjištění otvírá nové možnosti terapeutického využití FGF21 proti obezitě. Při dlouhodobějším podávání by se mělo dát hubnout i bez UCP1. Jen musíme být trpěliví a soustředit se na takové analogy FGF21, které budou schopné překonat hematoencefalickou bariéru a dostat se k řídicím centrům v mozku. Cílit přímo na hnědý tuk nestačí.

Výše popsaný vhled do problematiky mechanismu působení FGF21 vznikl zejména díky juniorskému grantu GA ČR. Ten umožnil sestavení výzkumného týmu zahrnujícího jak řešitele Petra Zouhara, tak technika a několik postgraduálních studentů. Zejména pro srbskou studentku Saru Stanić se FGF21 stalo hlavní náplní její disertační práce. Nesmírně důležité byly i podmínky zajištěné Fyziologickým ústavem AV ČR, v. v. i. – pro řešitele bylo zásadní inspirativní prostředí v rámci oddělení a špičkové přístrojové vybavení ústavního zvěřince zahrnující i jednotku pro metabolickou fenotypizaci in vivo. Výzkum působení FGF21 navazuje na postdoktorský projekt Petra Zouhara v laboratoři prof. Nedergaarda na Stockholmské univerzitě. Samotnou látku FGF21 poskytla firma Novo Nordisk.

Sara Stanić a Petr Zouhar

Obr. 2: Sara Stanić a Petr Zouhar

Náboženství jako vlivný faktor rozhodování

Projekt JUNIOR STAR Martina Langa z Filozofické fakulty Masarykovy univerzity se zaměřuje na kognitivní a neurovědecké aspekty náboženského rozhodování. Jeho snahou je lépe porozumět tomu, jak náboženské praktiky formují morální normy a ovlivňují rozhodování v každodenním životě, a to prostřednictvím inovativních experimentů a matematického modelování.

Studium náboženství

Martina Langa uchvátila rozmanitost přístupů ke studiu náboženství již během jeho vysokoškolského studia religionistiky. Během doktorátu se zaměřil na kognitivní a fyziologické procesy spojené s rituálními praktikami tamilských a marathi komunit na Mauriciu. Po dokončení doktorátu pokračoval ve výzkumu, jak víra v moralizující bohy podporuje spolupráci mezi spoluvěrci napříč 15 různými společnostmi. V současnosti se jeho výzkum zaměřuje na kognitivní procesy náboženského rozhodování, přičemž využívá matematické modelování a neurovědecké experimenty.

Jak náboženství formuje morální normy

Na světě jsou miliardy lidí, jejichž životy jsou náboženstvím hluboce ovlivněny. V mnoha zemích hraje náboženství významnou roli i v politice a řízení země. Ve svém JUNIOR STAR projektu, který má pracovní název CREDO (z anglického Computing Religious Devotion), se doktor Lang a jeho tým zabývá tím, jak náboženská víra a praktiky ovlivňují lidské rozhodování a chování, zejména v situacích, kdy hrají roli morální normy.

„Představte si, že najdete v noci na prázdné ulici peněženku. Jak se rozhodnete, co s ní udělat? Z předchozích výzkumů víme, že religiózní lidé mají větší pravděpodobnost, že jejich chování bude následovat morální normy, například vrátí peněženku nebo ji zanesou na policii, ale nás zajímá, jak k těmto rozhodnutím dochází. Je to například tím, že věřící lidé mají morální normy tak silně zakořeněné, že o rozhodnutích v takovýchto situacích nepřemýšlejí a automaticky následují morální normy? Nebo je to naopak tak, že religiozita vede k delšímu zvažování, protože si věřící musí vybavit náboženská pravidla, kterými by se měl nebo měla řídit, a potom teprve zváží, zda je aplikuje v této situaci? Právě tyto typy otázek, tedy jak dochází k rozhodnutí, zda následovat morální normy, či ne, nás v projektu zajímají,“ představuje Martin Lang svůj výzkum.

V něm vytváří matematické modely, které popisují tyto rozhodovací procesy a zohledňují, jak a kdy různé faktory ovlivňují naše volby. Modely jsou následně testovány a porovnávány s daty získanými různými experimenty, což umožnuje určit, který model nejlépe odpovídá realitě.

„Takové modely nám pak pomohou pochopit, jak silná náboženská víra ovlivňuje rozhodování a morální postoje. Dále zkoumáme, jak se tento rozhodovací proces upevňuje skrze pravidelné náboženské aktivity, jako jsou modlitba, čtení posvátných textů nebo účast na kolektivních rituálech. V neposlední řadě se zaměřujeme na to, zda a jak se tento rozhodovací proces liší mezi různými náboženstvími a v různých kulturních kontextech,“ dodává.

Antropologické pozorování rituálu na ostrově Mauricius

Antropologické pozorování rituálu na ostrově Mauricius. (foto: Dimitris Xygalatas)

Za hranice laboratoře

Pro výzkum Martina Langa je typická snaha přenášet laboratorní studie co nejvíce do reálného kontextu, jako například při jeho práci na Mauriciu, kde studoval rituály Sittirai Kavadi a další. „Během tohoto rituálu si věřící propichují kůži stovkami jehel a pak vyráží na několikakilometrové procesí, kde nesou na ramenou těžké oltáře nebo je táhnou pomocí háků zapíchnutých do kůže a u toho všeho tancují a upadají do transu. Možnost účastnit se jako vědec takového rituálu byla opravdu fascinující a domnívám se, že fyziologická data, která jsme během rituálu naměřili, jsou unikátní,“ uvádí řešitel příklad praktické roviny výzkumu.

Ve stejném duchu probíhá i podpořený projekt JUNIOR STAR, kdy kromě terénního výzkumu na již zmíněném Mauriciu budou další data získána díky zapojení spolupracovníků z různých zemí. „Plánujeme testovat a upravovat naše matematické modely rozhodovacího procesu ve 20 různých zemích a naším cílem je najít z každé země spolupracující osobu, která nám jednak pomůže experimentální design adaptovat do místních podmínek a společenských norem, ale také navrhnout, které parametry našich modelů bude potřeba upravit,“ dodává řešitel projektu.

Sběr dat během rituálu chození po mečích na ostrově Mauricius

Sběr dat během rituálu chození po mečích na ostrově Mauricius (foto: Dimitris Xygalatas)

 

JUNIOR STAR

Granty JUNIOR STAR jsou určeny pro excelentní začínající vědce, kteří získali titul Ph.D. před méně než 8 lety a kteří již publikovali v prestižních mezinárodních časopisech a mají významnou zahraniční zkušenost. Díky pětiletému financování s možností čerpat až 25 milionů Kč umožňují granty JUNIOR STAR vědecké osamostatnění a případné založení vlastní výzkumné skupiny. Na podporu dosáhne pouze zlomek podaných projektů. Pro rok 2024 bylo podpořeno pouze 17 z celkových 175 návrhů projektů.

SOUVISEJÍCÍ ČLÁNKY

Technologie z vesmíru může přispět ke změnám naší energetiky

Palivové články, tedy technologie, která se prosadila nejdříve v kosmických lodích a teprve poté zamířila do energetiky, nabízejí uplatnění i v budoucnosti, v níž se bude nutné obejít bez fosilních paliv. Na vývoji palivových článků se podílí profesor Fakulty chemické technologie Vysoké školy chemicko-technologické v Praze Karel Bouzek. Za výzkum v této oblasti byl loni nominován na Cenu předsedy Grantové agentury ČR.

Na princip palivového článku přicházeli vědci už v 19. století. Rozvoj výzkumu nastal až v šedesátých letech 20. století, kdy jimi byly vybaveny kosmické lodi programu Apollo. Palivové články dodávaly elektřinu spolehlivě, ale draze, což v kosmickém programu až tolik nevadilo, na Zemi však ano. Nicméně ceny klesají a dnes palivové články najdeme v průmyslu i v dopravě ve vozidlech na vodík.

„Odpadem“ je čistá voda

Palivový článek je elektrochemické zařízení (vlastně typ galvanického článku), které přímo proměňuje chemickou energii paliva a okysličovadla na elektřinu. Palivo se přivádí k záporné elektrodě, okysličovadlo ke kladné. V důsledku reakcí probíhajících na elektrodách vzniká elektrický proud.

„Nejelegantnější“ palivový článek používá k získání elektřiny jako palivo vodík a jako okysličovadlo kyslík. Při reakci pak kromě elektřiny vzniká jako „odpad“ jen čistá voda a teplo.

Stacionární palivové články již najdeme například v chemických továrnách. Jednotlivé palivové články mívají velikost podobnou krabici od banánů. Skládají se do větších celků společně s nezbytnou infrastrukturou, a vznikají tak jednotky na klíč instalované v nákladním kontejneru.

„Typickým příkladem je průmyslová výroba chlóru a hydroxidu sodného, při které vzniká značné množství vodíku jako vedlejší produkt a často se dnes spaluje. To je však nehospodárné a postupně končí. Narůstá význam palivových článků, které umožní pomocí tohoto vodíku efektivně vyrobit elektrickou energii,“ říká profesor Karel Bouzek, který se palivovými články a vodíkovými technologiemi zabývá už čtvrtstoletí. Takové články se dají také využít pro společnou výrobu elektřiny a tepla pro výrobní závody i pro domácnosti.

Druhou existující variantou jsou mobilní palivové články obvykle v osobních a nákladních automobilech, v autobusech nebo vlacích. Zatímco osobní automobily a vlaky poháněné vodíkovými palivovými články se již komerčně vyrábějí, nákladní automobily se prozatím nacházejí spíše ve fázi demonstrační. Zvnějšku nejsou odlišitelné od klasických vozidel se spalovacími motory. Vozidlo veze tlakovou nádobu se stlačeným vodíkem jako palivem, kyslík si bere přímo ze vzduchu a v palivových článcích vyrábí elektřinu pro pohon motoru.

řízení spektroskopického experimentu

Řízení spektroskopického experimentu v synchrotronu BESSY II v Helmholzově centru v Berlíně. Experiment pro zkoumání složení materiálů se uskutečnil společně s vědci z Helmholzova centra a z Technické univerzity v Bayreuthu, které jsou je partnery projektu (Foto: TU Bayreuth)

200 stupňů už je vysoká teplota

Projekt, za který byl profesor Bouzek nominován na Cenu předsedy Grantové agentury ČR, se týká vysokoteplotních palivových článků s protonově vodivou polymerní membránou. „Je to taková názvoslovná hříčka, protože vysoké teploty si elektrochemici obvykle představují někde nad 500 stupňů Celsia. Teploty v těchto palivových článcích však typicky dosahují 150 až 200 stupňů. Ale tradičně se jim říká vysokoteplotní, protože ty standardní, nízkoteplotní, pracují do teplot 80 stupňů,“ vysvětluje.

Dnes oceňovanou výhodou vysokoteplotních palivových článků je, že díky podstatně vyšší teplotě, než je teplota okolí, se výrazně snáze ochlazují, nebo přesněji, potřebují pro řízení teploty menší chladič. Navíc lze teplo z nich získané dále využít.

Výzkum profesora Bouzka se soustředil na lepší pochopení reakcí, které v takovém článku probíhají na aktivním povrchu elektrod. Výsledek tohoto základního poznání by pak měl vést k lepším provozním režimům, které umožní vyšší intenzitu výkonu palivových článků, jejich delší životnost i efektivnější využití v nich používaných katalyzátorů.

Po městě elektromobilem, do dálek s vodíkovým pohonem

K zajímavým výsledkům vedly i dřívější či jiné současně probíhající výzkumy profesora Bouzka a jeho spolupracovníků, což jsou i studenti, kteří se takto dostávají blíže k poznání moderních technologií. Výzkumníci se podíleli například na vývoji experimentálního nákladního automobilu Tatra Force poháněného vodíkovými palivovými články. S průmyslovými partnery z Česka i ze světa spolupracují na systémech výroby vodíku za využití obnovitelné energie, případně na vývoji palivových článků. Příkladem dalšího typu výzkumu je účast na vypracování analýzy využití vlaků poháněných palivovými články pro regionální železnice.

„Palivové články určitě nabídnou zajímavé alternativní řešení v situací, kdy se potřebujeme zbavit závislosti na fosilních palivech,“ hodnotí Karel Bouzek.

Například v automobilové dopravě se vede diskuse, jestli mají současné spalovací motory ustoupit elektromobilům, nebo raději vozidlům na vodík. „Vypadá to tak, že pro běžnou každodenní dopravu osobními nebo zásobovacími vozy po městě nebo v malém regionu se budou více hodit elektromobily, které se v noci nabijí a pak na baterie následující den jezdí. Zato pro pravidelné cesty na velké vzdálenosti a zejména pro nákladní automobily bude zřejmě výhodnější, pokud vozidlo nepoveze těžké baterie, ale nádrž s vodíkem a palivové články. Dojezdová vzdálenost bude výrazně větší a zároveň se vodík dá načerpat výrazně rychleji, než trvá běžné nabití baterií,“ konstatuje profesor Bouzek.

Stacionární palivové články se zase nabízejí jako důležitá součást systému pro skladování energie. Elektřina vyrobená slunečními, větrnými a také jadernými a ve vzdálenější budoucnosti i fúzními elektrárnami v době, kdy jí není tolik zapotřebí, se dá využít k výrobě ekologického vodíku elektrolytickým rozkladem vody. V době vyšší poptávky se tento vodík v palivovém článku opět promění v požadovanou elektřinu.

Významnou roli mohou hrát palivové články rovněž v dálkové přepravě energie, například mezi kontinenty. Elektrické vedení má na dlouhé vzdálenosti velké ztráty. A tak se nabízí myšlenka, že v místech, kde se dá postavit hodně slunečních nebo větrných elektráren, by se získaná elektřina využila pro výrobu vodíku. Ten by se pak přepravil potrubím nebo nákladními loděmi a na místě určení se v palivových článcích znovu proměnil v elektřinu. Případně by se dal vyrobený vodík hned sloučit se vzdušným dusíkem za vzniku čpavku, který se přepravuje snáze, a z něj by se na místě určení opět vodík uvolnil a použil v palivových článcích.

„Možností dalšího rozvoje energetiky je hodně, potřebujeme však najít technologicky a také ekonomicky nejvhodnější způsoby,“ shrnuje profesor Bouzek. „Osobně mě občas mrzí, že v českém prostředí se často potkávám s lidmi, u nichž se projevuje nejen silný konzervatismus, ale zejména despekt k novým technologiím. To je hodně nešťastné. Energetika a vlastně i průmysl se budou měnit a již ze střednědobého hlediska nezbývá než postupně opouštět fosilní paliva. Na to se musíme připravovat, abychom zajistili dlouhodobé fungování průmyslu, budoucí pracovní místa a tím také sociální smír ve společnosti.“

experiment - rentgenová spektroskopie

Uspořádání experimentu pro měření rentgenové spektroskopie na synchrotronu DESY v Hamburku (Foto: TU Bayreuth)

 

Název projektu, za jehož řešení byl nominován na Cenu předsedy Grantové agentury ČR v roce 2023: Elektrochemie rozhraní platina – oxokyseliny fosforu jako klíč k pochopení výkonnosti vysokoteplotních palivových článků s protonově vodivou membránou.

 

Karel Bouzek

prof. Dr. Ing. Karel Bouzek (foto: VŠCHT Praha)

Narodil se v roce 1968. Po absolvování Vysoké školy chemicko-technologické v Praze absolvoval několik zahraničních studijních pobytů, zejména v Německu a Norsku.

Po návratu se zapojil do pedagogické i výzkumné činnosti. Nyní je vedoucím Ústavu anorganické technologie Vysoké školy chemicko-technologické a proděkanem tamní Fakulty chemické technologie. Zabývá se zejména technickou elektrochemií a elektrochemickým inženýrstvím se zaměřením na oblasti vodíkových technologií (palivové články a elektrolýza vody) a zpracování vody, včetně matematického modelování. Je členem řady mezinárodních odborných organizací a za svou odbornou činnost byl oceněn například oceněním Carl Wagner Medal of Excellence, které uděluje Evropská federace chemických inženýrů nebo Cenou ministra školství, mládeže a tělovýchovy ČR za vědecké aktivity v oblasti nízkoteplotních palivových článků.

 

 

SOUVISEJÍCÍ ČLÁNKY

Mezidruhové křížení ryb a jeho vliv na odolnost hostitelů vůči parazitům

Úzká vazba mezi hostiteli a jejich parazity je důsledkem vzájemných evolučních interakcí. Jak těsnost vztahu ovlivňuje mezidruhové křížení hostitelských ryb zkoumala v rámci projektu podpořeného Grantovou agenturou ČR (GA ČR) Andrea Vetešníková Šimková z Přírodovědecké fakulty Masarykovy Univerzity.

Vzájemné křížení druhů (mezidruhová hybridizace) je běžným fenoménem u obratlovců, zejména u ryb. U hybridního potomstva první generace, tzv. první filiální generace hybridů (F1 hybridi), je častý rychlejší růst, delší přežívání a vyšší tolerance k environmentálním podmínkám nebo rezistence k parazitům v porovnání s rodičovskými druhy. Tento fenomén označujeme jako heterozní efekt (výhodu).

Heterozní výhoda se tedy ve většině případů vyskytuje pouze u F1 hybridů. U potomků, kteří vzniknou v dalších generacích tzv. zpětným křížením (tj. dojde ke křížení potomka F1 generace s jedním z rodičovských druhů), nastává selhání hybridů (hybrid breakdown), které je důsledkem genetické nekompatibility rodičovských genomů. Tito hybridi pak mají redukovanou biologickou zdatnost (fitness), trpí nízkou životaschopností a přežíváním, vykazují reprodukční abnormality nebo sterilitu, limitovanou ekologickou úspěšnost a jsou více postiženi parazity. Odolnost nebo naopak vnímavost vůči různým parazitárním infekcím tedy může být dobrým ukazatelem biologické zdatnosti hybridních ryb.

Paradiplozoon homoion – adultní jedinec s vajíčky, zástupce taxonu Monogenea

Paradiplozoon homoion – adultní jedinec s vajíčky, zástupce taxonu Monogenea

Studium genetické nekompatibility hybridů

Andrea Vetešníková Šimková je profesorkou zoologie na Přírodovědecké fakultě Masarykovy Univerzity. Více než dvacet let se se svým týmem věnuje evoluční biologii, ekologii a evoluční imunologii parazito-hostitelských vztahů v systémech rybích hostitelů a jejich asociovaných parazitů.

V průběhu řešení projektu podpořeného GA ČR se se svým týmem zaměřila na studium mezidruhového křížení u dvou systémů kaprovitých ryb s různou mírou genetické odlišnosti. První systém tvořil kapr obecný (Cyprinus carpio) a karas stříbřitý (Carassius gibelio), kteří vykazují menší míru genetické diferenciace, a druhý fylogeneticky více vzdálené druhy plotice obecná (Rutilus rutilus) a cejn velký (Abramis brama).

Studium patogenu asociovaného s rodičovským druhem

V prvním experimentu se výzkumný tým Andrey Vetešníkové Šimkové zaměřil na odolnost rodičů i hybridních generací v prvním systému (kapr obecný a karas stříbřitý) k viru jarní virémie (SVCV – Spring viraemia of carp virus), která představuje ekologicky i ekonomicky závažné onemocnění kaprovitých ryb.

Výsledky potvrdily vysokou vnímavost kapra obecného k infekci. Hybridi F1 generace byli nízce vnímaví k onemocnění podobně jako druhý z rodičovských druhů – karas stříbřitý. V případě post-F1 generací hybridů ovšem výzkumníci prokázali jejich vysokou vnímavost vůči virovému onemocnění, což lze interpretovat jako důsledek fenoménu hybridního selhání. Významnou roli ve vnímavosti některých skupin zpětných hybridů k virové nákaze sehrála tzv. cyto-nukleární nekompatibilita (tj. neslučitelnost vzniklých kombinací mitochondriálních a jaderních genomů) a rovněž byla důležitá role vnímavého (kapra obecného) nebo rezistentního (karase stříbřitého) rodičovského druhu v procesu křížení. Profily genů, které vyjadřují rozdíly v genové expresi mezi infikovanou a kontrolní skupinou ryb – zejména těch zapojených do důležitých imunitních drah –, vykazovaly podobnosti mezi F1 generací hybridů a rezistentním rodičem – karasem stříbřitým. Naopak k virové infekci vysoce vnímavý kapr obecný a generace post-F1 hybridů vykazovali vzájemnou podobnost i v expresi imunitních genů.

Podíl rodičovských genů a míra parazitace

Důsledkem vzájemných evolučních interakcí mezi parazity a hostiteli (koevoluce) dochází ke genetickým adaptacím na straně parazita i hostitele.  Jejich častým důsledkem je, že parazit vykazuje morfologické adaptace, díky kterým se může přichytit pouze ke konkrétnímu druhu hostitele, který je kompatibilní pouze se specifickým parazitem (například z pohledu genetiky, imunity a/nebo morfologie parazitované tkáně).

Zájmovými parazity je skupina Monogenea, do které patří zejména vnější paraziti infikující žábry, ploutve a pokožku ryb. Tito parazité vykazují vysokou druhovou diverzitu, celou řadu specifických morfologických adaptací na úrovni orgánu, který jim umožňuje přichycení k povrchu rybího hostitele, a hostitelskou specifitu, tj. určitý druh parazita je často striktně asociován pouze s jedním druhem hostitele.

Plotice obecná i cejn velký, rodičovské druhy ve druhém studovaném systému, mají každý svoje asociované druhy monogeneí. Výzkumníkům se v případě infekce druhově početnými ektoparazity ze skupiny Monogenea podařilo prokázat hybridní heterozu – hybridi F1 generací vykazovali menší míru parazitární infekce, byli nicméně parazitováni hostitelsky-specifickými parazity obou rodičovských druhů. Překvapivým zjištěním byla asymetrie zastoupení rodičovským druhům asociovaných parazitů u F1 generací hybridů, kterou naznačily již i předešlé studie výzkumného týmu. Mechanismus tohoto jevu je zatím neznámý a vyžaduje další studie na molekulární úrovni.

Míra parazitárního zatížení v této studii byla srovnatelná u obou rodičovských druhů i generací zpětných hybridů. Výzkumníci prokázali, že míra zastoupení genů rodičovských druhů v genomu hybridních potomků je určující pro to, v jakém poměru budou zastoupeni jednotliví hostitelsky specifičtí parazité. Jejich výzkum tedy poukazuje na význam vzájemné adaptace (tzv. koadaptace) mezi hostitelsky specifickým parazitem a jeho asociovaným hostitelem.

Schéma křížení aplikováno v systému kapr obecný a karas stříbřitý. Vnímavost k viru jarní virémie je označena barevně (zeleně – rezistentní generace, červeně – vnímavé generace, žlutě – středně vnímavé generace).

Schéma křížení aplikováno v systému kapr obecný a karas stříbřitý. Vnímavost k viru jarní virémie je označena barevně (zeleně – rezistentní generace, červeně – vnímavé generace, žlutě – středně vnímavé generace).

Jak ovlivňuje zdatnost hybridů nespecifický parazit?

V další studii se výzkumníci zaměřili na to, jak hostitelsky nespecifičtí parazité ovlivňují zdatnost hybridů. Kandidátním parazitem byl opět zástupce monogeneí z čeledi Diplozoidae, který se vyznačuje unikátní životní strategií. Larvální stádia tohoto parazita migrují do cílové pozice na žábrách rybího hostitele, dochází k fúzi dvou larev a vzniká jedinec následně dosahující pohlavní zralosti.

Vybraný zástupce Paradiplozoon homoion nevykazuje hostitelské preference, a je tedy schopen infikovat vysoký počet různých hostitelských druhů, zástupců kaprovitých ryb. Studie ukázala nižší míru infekce u experimentálně infikovaných rodičovských druhů plotice obecné a cejna velkého a hybridů F1 generace, a naopak dokumentovala vyšší parazitární infekci u zpětných hybridů, což je v souladu s předpokladem jejich genetického selhání.

Výsledky získané experimentální parazitární infekcí vědci podpořili navazující analýzou rozdílně exprimovaných genů mezi infikovanými a neinfikovanými rybími jedinci (tzv. diferenciálně exprimovaných genů), při které hybridi F1 generace vykazovali nižší počet diferenciálně exprimovaných genů ve srovnání s hybridy zpětného křížení. Studie odhalila důležité dráhy rybího hostitele spojené s jeho imunitou, diferenciací červených krvinek a vazbou složek krevního barviva aktivované parazitem P. homoion, který se živí krví rybího hostitele.

prof. RNDr. Andrea Vetešníková Šimková, Ph.D., prezentující svůj výzkum na mezinárodní konferenci

prof. RNDr. Andrea Vetešníková Šimková, Ph.D., prezentující svůj výzkum na mezinárodní konferenci

SOUVISEJÍCÍ ČLÁNKY

Bakterie Salmonella a imunitní odpověď lidského těla

Ondřej Černý a jeho výzkumný tým v rámci svého projektu JUNIOR STAR zkoumají, jak se lidské tělo brání infekci bakteriemi Salmonella, ale také jak bakterie tuto obranu překonávají. Cílem výzkumu je rozluštit a lépe pochopit složité mechanismy, které Salmonella využívá k přežití v hostiteli, a navrhnout nové strategie pro jejich překonání. Projekt může poskytnout klíčové poznatky pro budoucí léčbu nejen nemocí vyvolaných salmonelou, ale i jinými bakteriemi.

Prvotní impuls

Řešitel projektu Ondřej Černý se začal zajímat o bakterie a onemocnění, kter způsobují, již na gymnáziu. „Tehdy mi byla předepsána antibiotika a já byl zklamaný, že se v příbalovém letáku nepíše nic o tom, jak fungují. Řekl jsem si, že se to musím někde dozvědět, a to mě přivedlo na Přírodovědeckou fakultu Univerzity Karlovy,“ vysvětluje svůj prvotní impuls zájmu o toto téma. V rámci studia na univerzitě se pak začal specializovat na mechanismy, pomocí kterých bakterie vyvolávají nemoci.

obrázek týmu

RNDr. Ondřej Černý, Ph.D., se svým týmem

Salmonella vs. T-lymfocyty

Hlavním předmětem podpořeného projektu je bakterie rodu Salmonella, konkrétně její schopnost přežít co nejdéle v hostiteli a vyvolat onemocnění. V rozvinutých zemích jsou salmonelové infekce známy jako průjmová onemocnění, která obvykle odezní během jednoho týdne a která se léčí pouze dietou. V rozvojových zemích však bakterie Salmonella mohou způsobit vážné onemocnění, a to břišní tyfus, který je bez adekvátní antibiotické léčby často i smrtelný.

Klíčovým hráčem v boji proti těmto salmonelovým infekcím jsou buňky imunitního systému známé jako T-lymfocyty. Tyto buňky začínají být aktivní přibližně jeden týden po infekci, což je doba, kdy průjmová forma salmonelózy obvykle končí. U břišního tyfu T-lymfocyty poskytují důležitý časový prostor pro diagnostiku a zahájení antibiotické léčby.

Mechanismy tlumení imunity

U bakterie Salmonella se vyvinuly mechanismy, kterými tato bakterie tlumí obranné reakce T-lymfocytů tak, aby byla schopna prodlužit svou přítomnost v hostiteli. „Zatím víme o třech různých způsobech, jak Salmonella ovlivňuje začátek reakce T-lymfocytů na infekci a jak nejspíše prodlužuje infekčnost pacienta. My se snažíme zjistit, jestli Salmonella používá ještě nějaký další mechanismus a jak by se dalo těmto mechanismům bakterie zabránit. Kromě toho ukazujeme, že Salmonella je schopná mezi těmito třemi známými mechanismy přepínat, což jí dává celou řadu výhod,“ vysvětluje doktor Černý.

Poznatky i pro jiné nemoci?

Projekt přinese lepší pochopení působení bakterií Salmonella na hostitele, ale i imunitního systému na bakterii. Výzkumný tým se vedle hlavního cíle projektu, kterým je pochopení dějů odehrávajících se v těle při infekci, snaží také vyvinout kmen bakterie Salmonella, který by byl využitelný pro očkování proti průjmovým onemocněním, obdobně jako je tomu při očkování proti břišnímu tyfu. „Takové očkování by u nás mělo význam hlavně ve farmových chovech, protože přímo mezi lidmi se u nás salmonela moc nešíří. V rozvojových zemích se ale i tyto kmeny v důsledku špatných hygienických podmínek šíří mezi lidmi a mohou způsobovat život ohrožující onemocnění,“ uvádí budoucí možné využití vakcín Ondřej Černý.

Výzkum bakterií Salmonella jakožto modelového organismu by mohl být mnohdy aplikovatelný i na jiné bakteriální původce nemocí. Přepínání různých mechanismů bakterie v reakci na T-lymfocyty, které vědecký tým v rámci svého projektu studuje, využívá například i jeden z největších bakteriálních strašáků lidstva Mycobacterium tuberculosis, původce moru Yersinia pestis nebo nyní aktuální původce černého kašle Bordetella pertusis. Získané poznatky by tak mohly v budoucnu posloužit i v boji proti těmto nemocím.

obrázek z vyzkumu

Výzkum působení bakterií Salmonella na hostitelské buňky. A. K experimentům se používají pouze „spokojené“ subjekty. B. Po vstupu do hostitelských buněk přežívá Salmonella uvnitř specializovaných váčků, odkud ovlivňuje hostitelskou buňku pomocí tzv. „efektorových“ proteinů. C. Na molekulární úrovni může dojít například ke změně exprese hostitelských proteinů. D. Jednotliví členové týmu pak pečlivě analyzují výsledky experimentů.

 

 

JUNIOR STAR

Granty JUNIOR STAR jsou určeny pro excelentní začínající vědce, kteří získali titul Ph.D. před méně než 8 lety a kteří již publikovali v prestižních mezinárodních časopisech a mají významnou zahraniční zkušenost. Díky pětiletému financování s možností čerpat až 25 milionů Kč umožňují granty JUNIOR STAR vědecké osamostatnění a případné založení vlastní výzkumné skupiny. Na podporu dosáhne pouze zlomek podaných projektů. Pro rok 2024 bylo podpořeno pouze 17 z celkových 175 návrhů projektů.

 

SOUVISEJÍCÍ ČLÁNKY

Nová diagnostika infekčních onemocnění na cestě z laboratoře do nemocnic

Výsledky interdisciplinárního výzkumného týmu vedeného prof. Vladimírem Havlíčkem z Mikrobiologického ústavu AV ČR v Praze naznačují, jak bychom mohli pomocí látek v moči nemocných jedinců včasně a neinvazivně diagnostikovat bakteriální nebo houbové infekce. Výzkum probíhal ve spolupráci s laboratořemi z řady českých nemocnic a podpořila jej Grantová agentura České republiky (GA ČR).

Bakteriální a houbové infekce významně přispívají ke globální nemocnosti a úmrtnosti. Zatímco některé oblasti medicíny zaznamenaly pokles řady infekčních nemocí, jiné čelí jejich rostoucímu výskytu, zejména v souvislosti s krizemi nebo stoupající antibiotickou rezistencí mikroorganismů. Aby byl snížen dopad infekčních onemocnění na veřejné zdraví, je nutné zlepšit infrastrukturu zdravotní péče a vyvinout výzkumné úsilí, které povede k včasné a přesné diagnostice a následně i účinnější léčbě infekčních onemocnění.

Cesta za lepší diagnostikou

Interdisciplinární řešitelský tým z Mikrobiologického ústavu AV ČR v Praze pod vedením prof. Vladimíra Havlíčka ukázal nové neinvazivní možnosti diagnostiky již časných stadií bakteriálních a houbových infekcí, a to zkoumáním látek, které se nachází v moči nemocných jedinců. Poměrně rizikový i finančně náročný výzkumný projekt započal v době prvních vln pandemie COVID-19 a navazoval na předběžné výsledky ze zvířecích modelů, které vědci získali v letech 2019-2021.

V rámci tohoto pilotního výzkumu pracoval vědecký tým s potkany infikovanými směsí infekcí. Na potkanech byly experimentálně vyzkoušeny analytické metody, zvláště hmotnostní spektrometrie s iontovou cyklotronovou rezonancí a různé druhy mikroskopií. Projekt ukázal, že látky s podobnou chemickou strukturou, které patogeny syntetizují v konkrétních stádiích vlastního buněčného dělení, se z místa zánětu dostávají do krevní cirkulace a poté jsou hostitelem vyloučeny do moče.

Zjištění následně výzkumníci aplikovali na lidskou populaci. Na souborech kriticky nemocných pacientů chtěli ukázat, zda je možné neinvazivně, včasně a specificky diagnostikovat časná stadia nejčastějších infekčních onemocnění bakteriálního a houbového původu. „Ukázali jsme, že zejména houbové siderofory — látky, které houby vylučují do okolí, — mohou být účinně ‚čištěny‘ pacientovými ledvinami a následně vyloučeny do jeho moče. Položili jsme tak základ nové diagnostické oblasti, kterou jsme nazvali infekční metalomika,“ říká Vladimír Havlíček, vedoucí Laboratoře charakterizace molekulární struktury.

vědecký tým

Klíčoví pomocníci patogenů

V případě počínající infekce se mezi infikovaným hostitelem a mikrobiálním patogenem rozpoutá boj o živiny. Přetahovaná probíhá především o železo, zinek nebo měď. V souboji vyhrává lépe vybavený soupeř, tedy ten s početnějším a účinnějším arzenálem molekulárních nástrojů, které zajišťují střádání těchto nezbytných živin. Právě siderofory nebo metalofory pomáhají organismům dostatečný přísun živin zajistit a jsou syntetizovány nejen mikroby (zvláště bakterie, mykobakterie a vláknité houby), ale vyrábí si je také rostliny, paraziti nebo savci.

Savčí hostitel se probíhající infekci brání sekrecí lipokalinů – bílkovin, které některé mikrobiální siderofory vážou. Evolučně vyšlechtěné patogenní mikroorganismy dokážou svoje siderofory chemicky modifikovat, zvětšit jejich molekulární průměr, avšak se zachováním schopností vázat kovy. Těmto látkám říkáme „stealth“ siderofory. Nejúspěšnější patogeny pak vysílají falešné cíle (mock targets) nebo používají jiné inteligentní strategie pro zlepšení vlastní obrany vůči imunitnímu systému hostitele.

odberova mista

Odběrová místa lidských tělních tekutin výzkumníci analyzovali pomocí techniky kapalinové chromatografie a iontové cyklotronové rezonance.

Uvedení do praxe českými nemocnicemi

Výzkumníci ověřili svou pilotní hypotézu, tedy že mikrobiální siderofory jsou velmi specifickými značkami infekčních onemocnění, které se do okolí uvolňují ve fázi intenzivního buněčného dělení patogenu. Na základě přítomnost sideroforů v infikovaném hostiteli lze rozlišit pouhou kolonizaci od invazivního průběhu infekce, což je přínos, který doposavad používané diagnostické přístupy neposkytují.

Při porovnání nové metody se standardními technikami (molekulární techniky založené na DNA sekvenování, serologické a mikroskopické metody, kultivace) spolupracovali výzkumníci s jednotkami intenzivní péče v nemocnicích v Ostravě, Olomouci, Praze, Krnově a Havířově. Výsledky základního výzkumu byly natolik průkazné, že Agentura pro zdravotnický výzkum ČR udělila řešitelskému kolektivu grant aplikovaného výzkumu, díky němuž vědci započali multicentrickou klinickou studii, která na větším souboru pacientů prokáže umístění nové technologie mezi ustálenými standardními metodami.

Prof. Ing. Vladimír Havlíček, Dr.

 

 

SOUVISEJÍCÍ ČLÁNKY

Revoluce ve farmacii díky udržitelné syntéze atropoizomerů?

Dr. Paulo De Souza Paioti z Ústavu organické chemie a biochemie AV ČR vede prestižní projekt JUNIOR STAR, ve kterém zkoumá atropoizomery – molekuly s revolučním potenciálem pro vývoj léčiv. Se svým týmem vyvíjí inovativní metody syntézy, které umožní objevovat a vyrábět životně důležité léčivé látky udržitelnějším způsobem.

Přesnost molekulárních interakcí

Dr. Paiotiho, hlavního řešitele projektu, uchvátila chemie již během univerzitních studií, která mu otevřela vhled do spletitého pohybu molekul a jejich vlivu na vlastnosti látek. „Velká část krásy chemie pochází z pochopení toho, jak molekuly interagují na molekulární úrovni a jak to ovlivňuje vlastnosti, které lze skutečně vidět nebo nahmatat,“ vysvětluje počáteční impuls jeho celoživotní záliby v chemii Paulo Paioti. Obzvláště ho zaujal vinkristin, strukturálně komplexní organická molekula, která se po vstupu do lidského těla cíleně zaměřuje na likvidaci rakovinových buněk. Tento příklad ilustruje vysokou přesnost molekulárních interakcí.

Atropoizomery: klíč k udržitelnému vývoji léčiv?

Dr. Paioti a jeho tým se ve svém projektu JUNIOR STAR zaměřují na atropoizomery – třídu molekul s významným potenciálem farmaceutického využití. Přesněji řečeno, jejich cílem je vyvinout nové metody syntézy těchto molekul, které by byly environmentálně šetrnější. „Atropoizomery mají zásadní význam pro budoucnost vývoje léčiv. Naše práce si klade za cíl rozšířit repertoár dostupných sloučenin, což by mohlo vést k převratným způsobům léčby různých onemocnění,“ vysvětluje vědec.

Pokud bude projekt doktora Paiotiho úspěšný, mohl by mít zásadní dopad na zdraví i udržitelnost. „V dlouhodobém horizontu může projekt vést k novým léčivům, která mohou pomoci proti smrtelným chorobám, jako je rakovina,“ poznamenává. Kromě toho by výzkum mohl být průkopníkem ekologicky udržitelnějších chemických procesů. V rámci projektu totiž vědecký tým také například zkoumá chemické reakce, ve kterých by místo běžně používaného palladia plnil funkci katalyzátoru nikl, který je mnohem méně toxický a v přírodě častější, tudíž i levnější. „Doufáme, že se nám podaří díky využití niklu vytvořit udržitelnější a dostupnější metody výroby životně důležitých léčiv,“ dodává původem brazilský vědec.

Nezbytnost mezinárodní spolupráce

Hlavní řešitel projektu, jak sám říká, věří, že „věda by neměla mít hranice“. Po studiu chemie v Brazílii, absolvování doktorátu v USA a následném postdoktorátu ve Francii, ho kariérní cesta zavedla do Česka. Po všech těchto zkušenostech si hluboce cení rozmanitých perspektiv, které přináší multikulturní tým. Jeho současná skupina zahrnuje členy pěti různých národností. „Projekt bude skutečně úspěšný pouze tehdy, pokud budeme spolupracovat s výzkumníky ze zahraničí i odsud,“ zdůrazňuje nezbytnost globální spolupráce pro vědecký úspěch a pokrok.

Paioti and Team

Dr. Paioti (vlevo nahoře) se svým týmem

SOUVISEJÍCÍ ČLÁNKY

Není překladatel jako překladatel aneb i buňky potřebují výkladový slovník

Když se utvářela molekulární podstata života, nechybělo málo a mohlo dojít k fatálnímu pomatení jazyků jeho základních tvůrců. V takovém případě by žádný život možná ani nevznikl, tedy určitě ne ve formě, jakou známe dnes. Molekulární řečí buněk se po mnoho let zabývají čeští molekulární biologové z Mikrobiologického ústavu Akademie věd ČR pod vedením Dr. Leoše Valáška. Jejich výsledky na toto téma, podporované Grantovou agenturou ČR (GA ČR), nedávno otiskly prestižní odborné časopisy, jako je Nature a Nature Structural and Molecular Biology.

 Chceme-li porozumět člověku, který mluví cizím jazykem, máme dvě možnosti. Buď si zaplatíme profesionálního překladatele, nebo se jeho jazyk pokusíme naučit gramatickým rychlokurzem a překladatelem „rychlokvaškou“ se staneme sami. V takovém případě se naše překladatelské schopnosti neobejdou bez výkladového slovníku. Takových překladatelů „rychlokvašek“ má každá buňka přehršel. Už odedávna se starají o to, aby genetickou informaci uloženou v řeči DNA (nukleotidové sekvenci DNA) přesně přeložili do řeči bílkovin (aminokyselinové sekvence). Díky tomu totiž buňka, potažmo celý organismus, žije a množí se. Bez dokonalých slovníků jsou však tito neviditelní překladatelé zcela ztracení. Ale jsou jejich slovníky dokonalé?

„Nukleotidština“ a „aminokyselinština“ jako dva základní jazyky života

Genetická informace je uložena v molekulách DNA. Jednotlivé úseky DNA označujeme jako geny a soubor genů v daném organismu nazýváme genom. Každá molekula DNA se skládá ze čtyř základních stavebních prvků – nukleotidů. V přeneseném slova smyslu lze říci, že různými kombinacemi nukleotidů vznikají jednotlivá slova a věty řeči DNA, tedy „nukleotidštiny“. Genom si pak lze představit jako knihu života. Každé slovo je tvořeno kombinací přesně tří nukleotidů, takže tato molekulární řeč má pouze 64 slov, respektive 61 slov a 3 různé druhy teček, které věty ukončují. V porovnání s naší řečí je „nukleotidština“ vskutku na slovo skoupá.

Každý gen je ukončený tečkou a obsahuje návod na výrobu jedné bílkoviny, tedy řetězce aminokyselin, která vzniká různými kombinacemi dvaceti základních aminokyselin procesem zvaným proteinová syntéza. Opět lze v nadsázce říci, že různými kombinacemi aminokyselin vznikají jednotlivá slova a věty řeči bílkovin, tedy „aminokyselinštiny“.

Rychlokvaška ribozom se slovníky tRNA

Definici života tak lze vyjádřit jako dokonale provedený překlad genetické informace z „nukleotidštiny“ do „aminokyselinštiny“, který v každé buňce probíhá prakticky neustále od jejího zrození až po její skon. O něj se stará makromolekula zvaná ribozom. Je to ale ten typ překladatele, který si bez slovníku vůbec neví rady. Jako slovníky mu slouží malé molekuly zvané transferové RNA (tRNA), které přenáší aminokyseliny. Opět v nadsázce řečeno, ribozom otevře jednu stránku knihy DNA, kde je v „nukleotidštině“ napsáno, v jakém přesném pořadí je třeba ze všech dostupných dvaceti aminokyselin vyrobit bílkovinu, kterou si buňka zrovna potřebuje vyrobit.

Molekuly tRNA umí každé slovo z celkových 61 přečíst, protože jsou stejně jako DNA tvořeny sekvencí nukleotidů, a podle smyslu a pořadí těchto slov na ribozom postupně přinesou přesně ty aminokyseliny, které daným slovům odpovídají. To je přesně určeno tzv. genetickým kódem. Ribozom se pak stará o to, aby se jednotlivé aminokyseliny propojily do celé smysluplné věty „aminokyselinštiny“, tedy vytvořily požadovanou bílkovinu. Při 61 slovech „nukleotidštiny“ a 20 slovech „aminokyselinštiny“ je patrno, že se některá slova „nukleotidštiny“ musejí překládat stejnou aminokyselinou. Tak to opravdu je, a proto se genetickému kódu říká, že je degenerovaný. V tomto případě je ale degenerace ke prospěchu věci.

tRNA poplety

Je známo, že slovníky tRNA nejsou neomylné. Občas se význam některých slov „nukleotidštiny“ poplete a tRNA přinese na ribozom jinou aminokyselinu, než jaká danému slovu odpovídá. Děje se tak naštěstí jen opravdu velmi zřídka. O něco častěji se ale může stát, že tRNA přinesou na ribozom aminokyselinu i v okamžiku, kdy „nukleotidština“ signalizuje jednu ze tří teček a mělo by dojít k ukončení syntézy dané bílkoviny. V takovém případě se syntéza některých bílkovin protáhne a ty jsou potom delší, než by správně měly být. Někdy je to žádoucí, ale většinou jsou takto prodloužené bílkoviny buňkou ihned zlikvidovány. Zajímavé je, že jen hrstka molekul tRNA dělá tyhle chyby, zatímco většina ostatních je vskutku neomylná a čte/kóduje jen tu svoji aminokyselinu. Vědci z Mikrobiologického ústavu AV ČR chtěli zjistit, které z molekul tRNA patří mezi tyhle „tRNA poplety“ a také, proč tomu tak je.

Dr. Valášek a jeho vědecký tým

Dr. Valášek a jeho vědecký tým

 Nonstop trypanosoma a tRNA-superpopleta.

Vědci z Ostravské univerzity pod vedením prof. Marka Eliáše se v nedávné době podíleli na objevu velmi zajímavého fenoménu: popsali organismy, jejichž věty jsou v „nukleotidštině“ přerušeny velkým množstvím teček. V principu by vůbec neměly přežít, protože dle pravidel daných genetickým kódem by syntéza prakticky všech jejich proteinů měla být předčasně ukončena. Oni ale bez problému kolonizovali celý svět. Patří mezi ně například trypanosomy Blastocrithidia nonstop.

Dílem náhody se týmu Leoše Valáška, ve spolupráci s vědci z Parazitologického ústavu Biologického centra AV ČR pod vedením prof. Juliuse Lukeše a Dr. Zdeňka Parise, podařilo ukázat, že jedním z hlavních důvodů, proč tyto organismy přežily, je fakt, že mají speciální tRNA kódující aminokyselinu tryptofan, která je superpopleta. Tato tRNA čte jednu ze tří teček právě jako tryptofan a úplně ignoruje, že tečka, ať je uprostřed věty, nebo na jejím konci, by měla vždy znamenat konec. Tento objev byl v roce 2023 zveřejněn v prestižním časopise Nature.

Rozhoduje síla vazby

Laboratoř Leoše Valáška se již několik let zabývala otázkou, jak a proč se mezi tRNA vyskytují tyhle tRNA poplety. Nedávno se výzkumnému týmu podařilo ukázat, že tRNA poplety se od těch přesných liší jen v drobných detailech v jejich celkovém složení. Tyto malé rozdíly pak registruje ribozom, se kterým si díky těmto odlišnostem vytvoří silnější intermolekulární vazbu. Jinými slovy, díky této vylepšené vazbě je ribozom neodmítne, a to ani když tečky (tj. konce vět) nelogicky překládají jako aminokyseliny tryptofan, popřípadě glutamin. Odborně se tomu říká pročítání stop kodónu, které vede k produkci nestandardně dlouhých proteinů. Tento objev byl nedávno zveřejněn v prestižním časopise Nature Structural and Molecular Biology.

Zkumavka

Jak využít omylné tRNA slovníky?

Existuje celá řada více či méně vzácných genetických onemocnění, jejichž podstata spočívá ve spontánním výskytu jediné tečky navíc někde uprostřed jedné jediné věty v rámci celého genomu. Této „tečce navíc“ se říká nesmyslná mutace a tato věta vždy kóduje nějaký pro buňku velmi důležitý protein. Mezi nejznámější onemocnění tohoto typu patří cystická fibróza, která je způsobená jednou nesmyslnou mutací v genu, jehož proteinový produkt zajišťuje čistotu a dobrou funkci plic.

Pokud by se vědcům podařilo zpřesnit funkci těch pár známých popletených tRNA, tak bychom se v budoucnu mohli dočkat tzv. tRNA terapií. V rámci nich do těla pacientů vneseme tyto modifikované tRNA, které zajistí, že jakákoliv tečka uprostřed jakékoliv věty bude bezpečně přečtena, syntéza zkráceného proteinu bude dokončena a pacient bude jednou provždy vyléčen.

Nebude to jednoduché, neboť je současně naprosto nezbytné, aby tečky na konci všech „genomických“ vět zůstaly dál tečkami. Jinými slovy, tyhle pravé tečky musí zdokonalené, popletené tRNA zcela ignorovat. Naštěstí se dle současného výzkumu, včetně toho z Laboratoře regulace genové exprese Leoše Valáška, zdá, že pokrok v téhle oblasti je mnohem rychlejší a nadějnější, než si vědci ještě do nedávna dokázali vůbec představit.

Nikdo není dokonalý… a toho se dá využít!

Ani naše základní molekulární mechanismy nejsou zcela dokonalé. A tak díky rychlokvašce překladateli-ribozomu a popleteným tRNA máme šanci si sami opravit nesmyslné mutace v knihách/genomech našich životů, které velmi snižují kvalitu života některých pacientů a které se dědičnými stávají proto, že je základní opravné mechanismy buňky nedokázaly opravit anebo opravit nestihly. Překlad z „nukleotidštiny“ do „aminokyselinštiny“ upravený člověkem zvnějšku zřejmě nebyl nikdy blíže jeho uplatnění v medicíně, než je nyní.

Dr. Valášek

Dr. Leoš Valášek

 

 

Autorství textu:  Dr. rer. nat. Leoš Valášek, DSc.

SOUVISEJÍCÍ ČLÁNKY

Rypoši odhalují tajemství kvality vajíček a vaječníků

Projekt JUNIOR STAR Lenky Gahurové z Jihočeské univerzity v Českých Budějovicích zkoumá kvalitu vajíček a vaječníků u dlouhověkých savců. Svůj výzkum zaměřuje na rypoše – hlodavce známé pro svou dlouhověkost a unikátní společenský systém. Výsledky výzkumu by mohly přinést významné poznatky pro léčbu neplodnosti a zlepšení včasné diagnostiky chromozomálních poruch lidských plodů, jako je Downův syndrom.

Od fascinace přírodou k výzkumu reprodukce

Řešitelku podpořeného projektu JUNIOR STAR Lenku Gahurovou fascinuje příroda již od dětství. Po maturitě pro ni bylo rozhodování o dalším studiu snadné — zvolila si Přírodovědeckou fakultu Univerzity Karlovy. Zde během magisterského studia absolvovala pobyt na anglické Cambridge, která jí natolik učarovala, že si ji po získání magisterského titulu vybrala k doktorskému studiu. Způsob, jakým se tam „dělá“ věda, vedl k rozhodnutí doktorky Gahurové v akademickém prostředí zůstat natrvalo.

Co se týče tématu, tak ‚choroby‘ mě nikdy nelákaly, protože na mě působí smutně. Naopak téma reprodukce a vzniku nového života mě vždy fascinovalo a působilo na mě povzbudivě a nadějně. Jak je možné, že se něco takového vůbec vyvinulo — že ze dvou jedinců vznikne třetí, a to pouhým spojením jedné vysoce specializované buňky od každého z rodičovských jedinců,“ vysvětluje Lenka Gahurová důvody, které vedly k její specializaci.

Rypoš jako výzkumný model

Projekt zkoumá dlouhodobou kvalitu vajíček a vaječníků u dlouhověkých druhů savců. Jako hlavní výzkumný model jsou používáni rypoši — podzemní hlodavci původem z Afriky. Tito jedineční tvorové jsou známi pro svou dlouhověkost (mohou se dožít až 40 let), odolnost vůči rakovině a svůj, pro savce ojedinělý, sociální systém. Rypoši totiž, stejně jako například včely, žijí tzv. eusociálním způsobem života — v takovémto sociálním uspořádání se z celé skupiny, která může být tvořena až desítkami jedinců, rozmnožuje pouze jedna dvojice. „Naše fakulta je jedno z mála míst na světě, kde se rypoši dlouhodobě chovají a úspěšně množí. Chov byl založen před více než 20 lety prof. Šumberou a někteří z prvních rypošů jsou stále naživu,“ říká Lenka Gahurová.

Současné poznatky ukazují, že vajíčka se v těle samic savců vytvoří ještě před jejich narozením. Vajíčka jsou tak stejně stará jako savec samotný. Čtyřicetiletá žena má tedy čtyřicet let stará vajíčka. Ta tak představují jedny z nejstarších buněk v jejím těle. Během let si však musí udržet svou kvalitu, neboť správné fungování vajíček je klíčovou podmínkou pro možnost reprodukce, a tedy přežití druhu.

Drtivá většina studií věnujících se kvalitě vajíček a vaječníků je prováděna na myších. Ty však žijí jen dva až tři roky a plodné jsou dokonce pouze jeden rok. „U lidí se však jedná o dekády, i proto jsem si pro výzkum zvolila rypoše — nejdéle žijícího hlodavce. Kromě kvality vajíček se v rámci výzkumu zaměřujeme i na jejich kvantitu — u žen bylo prokázáno, že pokud množství vajíček klesne pod určitou úroveň, nastává menopauza. U myší jsme také pozorovali velký úbytek počtu vajíček s přibývajícím věkem,“ vysvětluje Lenka Gahurová důvody výběru rypošů.

Rypoš lysý

Rypoš lysý

Klíčové faktory ovlivňující kvalitu vajíček a vaječníků

Podpořený projekt JUNIOR STAR se zaměřuje na studium dvou aspektů ovlivňujících kvalitu vajíček a vaječníků. Prvním jsou tzv. transpozony — opakující se sekvence v genomu savců, které mohou způsobovat zánětlivé reakce nebo i narušovat funkce genu. Z těchto důvodů jsou transpozony v buňkách obvykle umlčené a neaktivní. Vajíčka představují jednu z mála výjimek, kde jsou tyto transpozony poměrně aktivní, minimálně u myší. „Zjistili jsme, že u rypoše lysého je, na rozdíl od většinou zkoumané myši, aktivita transpozonů ve vajíčkách téměř nulová. Chceme zjistit, jaký vliv to má na biologii vajíček a jejich počet a na rozsah poškození DNA.“

„Druhým aspektem, kterému se věnujeme,“ dodává řešitelka projektu, „je ovulace. U myší se ukázalo, že opakované ovulace negativně ovlivňují kvalitu vajíček. Rypoši jsou zajímaví tím, že ovuluje jen jedna samice, zatímco ostatní ne. Máme tak systém, kde můžeme porovnat vlastnosti vajíček u starých, stále ovulujících samic, neovulujících samic a mladých samic na začátku pohlavní dospělosti,“ vysvětluje konkrétní předměty bádání doktorka Gahurová.

V rámci výzkumu jsou tak porovnávána vajíčka u tří různých skupin samic. Vědci se zaměřují například na poškození jejich DNA nebo míru zánětlivých procesů ve vaječnících. Zároveň si Lenka Gahurová a její tým dali za úkol odhalit, zda nemůžou u rypošů vznikat nová vajíčka i v dospělosti.

Vědecký tým

Vědecký tým

Možné zlepšení diagnostiky poruch u plodu

Očekáváným výsledkem projektu JUNIOR STAR je hlubší porozumění mechanismům udržujícím vysokou kvalitu vajíček a vaječníků u dlouhověkých savců. Zjištění by mohla mít význam pro léčbu poruch plodnosti u žen nebo pomoci starším ženám, které se neúspěšně snaží otěhotnět.

V současnosti se během těhotenství vypočítává riziko Downova syndromu a jiných chromozomálních poruch — pokud je ženě více než 35 let, je riziko vysoké a je doporučen odběr plodové vody. „Pokud by se v rámci výzkumu mému mezinárodnímu týmu podařilo prokázat, že počet ovulací ovlivňuje kvalitu vajíček a vaječníků, mohly by se tyto poznatky využít v personalizované medicíně. Do výpočtu rizika by se tak kromě věku ženy mohly zahrnout faktory ovlivňující počet ovulací. Tedy věk při začátku menstruace, užívání hormonální antikoncepce a další. Pokud totiž máme dvě různé ženy ve věku 35 let, ze kterých jedna dlouhodobě brala hormonální antikoncepci, zatímco druhá ne, byla by u té první mnohem menší pravděpodobnost výskytu chromozomálních poruch plodu,“ zmiňuje konkrétní možné budoucí využití výsledků Lenka Gahurová.

Skloubení osobního a vědeckého života

Lenka Gahurová je důkazem, že vědecká kariéra může jít ruku v ruce s úspěšným osobním životem. Během doktorátu na Cambridge se závodně věnovala veslování. V době největšího vytížení stíhala vedle výzkumu až 13 tréninků týdně. Dvakrát dokonce reprezentovala Cambridge na prestižních závodech proti Oxfordu. Po návratu do České republiky již šestým rokem úspěšně kombinuje úspěšnou vědeckou kariéru s péčí o své dvě malé děti.

Lenka Gahurová držící rypoše

Mgr. Lenka Gahurová, Ph.D., držící rypoše

JUNIOR STAR

Granty JUNIOR STAR jsou určeny pro excelentní začínající vědce, kteří získali titul Ph.D. před méně než 8 lety a kteří již publikovali v prestižních mezinárodních časopisech a absolvovali významnou zahraniční stáž. Díky pětiletému projektu s možností čerpat až 25 milionů Kč umožňují granty JUNIOR STAR vědecké osamostatnění a případné založení vlastní výzkumné skupiny. Na podporu dosáhne pouze zlomek podaných projektů. Pro rok 2024 bylo podpořeno 17 z celkových 175 návrhů projektů.

 

SOUVISEJÍCÍ ČLÁNKY