Dr. Paulo De Souza Paioti z Ústavu organické chemie a biochemie AV ČR vede prestižní projekt JUNIOR STAR, ve kterém zkoumá atropoizomery – molekuly s revolučním potenciálem pro vývoj léčiv. Se svým týmem vyvíjí inovativní metody syntézy, které umožní objevovat a vyrábět životně důležité léčivé látky udržitelnějším způsobem.
Přesnost molekulárních interakcí
Dr. Paiotiho, hlavního řešitele projektu, uchvátila chemie již během univerzitních studií, která mu otevřela vhled do spletitého pohybu molekul a jejich vlivu na vlastnosti látek. „Velká část krásy chemie pochází z pochopení toho, jak molekuly interagují na molekulární úrovni a jak to ovlivňuje vlastnosti, které lze skutečně vidět nebo nahmatat,“ vysvětluje počáteční impuls jeho celoživotní záliby v chemii Paulo Paioti. Obzvláště ho zaujal vinkristin, strukturálně komplexní organická molekula, která se po vstupu do lidského těla cíleně zaměřuje na likvidaci rakovinových buněk. Tento příklad ilustruje vysokou přesnost molekulárních interakcí.
Atropoizomery: klíč k udržitelnému vývoji léčiv?
Dr. Paioti a jeho tým se ve svém projektu JUNIOR STAR zaměřují na atropoizomery – třídu molekul s významným potenciálem farmaceutického využití. Přesněji řečeno, jejich cílem je vyvinout nové metody syntézy těchto molekul, které by byly environmentálně šetrnější. „Atropoizomery mají zásadní význam pro budoucnost vývoje léčiv. Naše práce si klade za cíl rozšířit repertoár dostupných sloučenin, což by mohlo vést k převratným způsobům léčby různých onemocnění,“ vysvětluje vědec.
Pokud bude projekt doktora Paiotiho úspěšný, mohl by mít zásadní dopad na zdraví i udržitelnost. „V dlouhodobém horizontu může projekt vést k novým léčivům, která mohou pomoci proti smrtelným chorobám, jako je rakovina,“ poznamenává. Kromě toho by výzkum mohl být průkopníkem ekologicky udržitelnějších chemických procesů. V rámci projektu totiž vědecký tým také například zkoumá chemické reakce, ve kterých by místo běžně používaného palladia plnil funkci katalyzátoru nikl, který je mnohem méně toxický a v přírodě častější, tudíž i levnější. „Doufáme, že se nám podaří díky využití niklu vytvořit udržitelnější a dostupnější metody výroby životně důležitých léčiv,“ dodává původem brazilský vědec.
Nezbytnost mezinárodní spolupráce
Hlavní řešitel projektu, jak sám říká, věří, že „věda by neměla mít hranice“. Po studiu chemie v Brazílii, absolvování doktorátu v USA a následném postdoktorátu ve Francii, ho kariérní cesta zavedla do Česka. Po všech těchto zkušenostech si hluboce cení rozmanitých perspektiv, které přináší multikulturní tým. Jeho současná skupina zahrnuje členy pěti různých národností. „Projekt bude skutečně úspěšný pouze tehdy, pokud budeme spolupracovat s výzkumníky ze zahraničí i odsud,“ zdůrazňuje nezbytnost globální spolupráce pro vědecký úspěch a pokrok.
Projekt JUNIOR STAR Lenky Gahurové z Jihočeské univerzity v Českých Budějovicích zkoumá kvalitu vajíček a vaječníků u dlouhověkých savců. Svůj výzkum zaměřuje na rypoše – hlodavce známé pro svou dlouhověkost a unikátní společenský systém. Výsledky výzkumu by mohly přinést významné poznatky pro léčbu neplodnosti a zlepšení včasné diagnostiky chromozomálních poruch lidských plodů, jako je Downův syndrom.
Od fascinace přírodou k výzkumu reprodukce
Řešitelku podpořeného projektu JUNIOR STAR Lenku Gahurovou fascinuje příroda již od dětství. Po maturitě pro ni bylo rozhodování o dalším studiu snadné — zvolila si Přírodovědeckou fakultu Univerzity Karlovy. Zde během magisterského studia absolvovala pobyt na anglické Cambridge, která jí natolik učarovala, že si ji po získání magisterského titulu vybrala k doktorskému studiu. Způsob, jakým se tam „dělá“ věda, vedl k rozhodnutí doktorky Gahurové v akademickém prostředí zůstat natrvalo.
„Co se týče tématu, tak ‚choroby‘ mě nikdy nelákaly, protože na mě působí smutně. Naopak téma reprodukce a vzniku nového života mě vždy fascinovalo a působilo na mě povzbudivě a nadějně. Jak je možné, že se něco takového vůbec vyvinulo — že ze dvou jedinců vznikne třetí, a to pouhým spojením jedné vysoce specializované buňky od každého z rodičovských jedinců,“ vysvětluje Lenka Gahurová důvody, které vedly k její specializaci.
Rypoš jako výzkumný model
Projekt zkoumá dlouhodobou kvalitu vajíček a vaječníků u dlouhověkých druhů savců. Jako hlavní výzkumný model jsou používáni rypoši — podzemní hlodavci původem z Afriky. Tito jedineční tvorové jsou známi pro svou dlouhověkost (mohou se dožít až 40 let), odolnost vůči rakovině a svůj, pro savce ojedinělý, sociální systém. Rypoši totiž, stejně jako například včely, žijí tzv. eusociálním způsobem života — v takovémto sociálním uspořádání se z celé skupiny, která může být tvořena až desítkami jedinců, rozmnožuje pouze jedna dvojice. „Naše fakulta je jedno z mála míst na světě, kde se rypoši dlouhodobě chovají a úspěšně množí. Chov byl založen před více než 20 lety prof. Šumberou a někteří z prvních rypošů jsou stále naživu,“ říká Lenka Gahurová.
Současné poznatky ukazují, že vajíčka se v těle samic savců vytvoří ještě před jejich narozením. Vajíčka jsou tak stejně stará jako savec samotný. Čtyřicetiletá žena má tedy čtyřicet let stará vajíčka. Ta tak představují jedny z nejstarších buněk v jejím těle. Během let si však musí udržet svou kvalitu, neboť správné fungování vajíček je klíčovou podmínkou pro možnost reprodukce, a tedy přežití druhu.
Drtivá většina studií věnujících se kvalitě vajíček a vaječníků je prováděna na myších. Ty však žijí jen dva až tři roky a plodné jsou dokonce pouze jeden rok. „U lidí se však jedná o dekády, i proto jsem si pro výzkum zvolila rypoše — nejdéle žijícího hlodavce. Kromě kvality vajíček se v rámci výzkumu zaměřujeme i na jejich kvantitu — u žen bylo prokázáno, že pokud množství vajíček klesne pod určitou úroveň, nastává menopauza. U myší jsme také pozorovali velký úbytek počtu vajíček s přibývajícím věkem,“ vysvětluje Lenka Gahurová důvody výběru rypošů.
Rypoš lysý
Klíčové faktory ovlivňující kvalitu vajíček a vaječníků
Podpořený projekt JUNIOR STAR se zaměřuje na studium dvou aspektů ovlivňujících kvalitu vajíček a vaječníků. Prvním jsou tzv. transpozony — opakující se sekvence v genomu savců, které mohou způsobovat zánětlivé reakce nebo i narušovat funkce genu. Z těchto důvodů jsou transpozony v buňkách obvykle umlčené a neaktivní. Vajíčka představují jednu z mála výjimek, kde jsou tyto transpozony poměrně aktivní, minimálně u myší. „Zjistili jsme, že u rypoše lysého je, na rozdíl od většinou zkoumané myši, aktivita transpozonů ve vajíčkách téměř nulová. Chceme zjistit, jaký vliv to má na biologii vajíček a jejich počet a na rozsah poškození DNA.“
„Druhým aspektem, kterému se věnujeme,“ dodává řešitelka projektu, „je ovulace. U myší se ukázalo, že opakované ovulace negativně ovlivňují kvalitu vajíček. Rypoši jsou zajímaví tím, že ovuluje jen jedna samice, zatímco ostatní ne. Máme tak systém, kde můžeme porovnat vlastnosti vajíček u starých, stále ovulujících samic, neovulujících samic a mladých samic na začátku pohlavní dospělosti,“ vysvětluje konkrétní předměty bádání doktorka Gahurová.
V rámci výzkumu jsou tak porovnávána vajíčka u tří různých skupin samic. Vědci se zaměřují například na poškození jejich DNA nebo míru zánětlivých procesů ve vaječnících. Zároveň si Lenka Gahurová a její tým dali za úkol odhalit, zda nemůžou u rypošů vznikat nová vajíčka i v dospělosti.
Vědecký tým
Možné zlepšení diagnostiky poruch u plodu
Očekáváným výsledkem projektu JUNIOR STAR je hlubší porozumění mechanismům udržujícím vysokou kvalitu vajíček a vaječníků u dlouhověkých savců. Zjištění by mohla mít význam pro léčbu poruch plodnosti u žen nebo pomoci starším ženám, které se neúspěšně snaží otěhotnět.
V současnosti se během těhotenství vypočítává riziko Downova syndromu a jiných chromozomálních poruch — pokud je ženě více než 35 let, je riziko vysoké a je doporučen odběr plodové vody. „Pokud by se v rámci výzkumu mému mezinárodnímu týmu podařilo prokázat,že počet ovulací ovlivňuje kvalitu vajíček a vaječníků, mohly by se tyto poznatky využít v personalizované medicíně. Do výpočtu rizika by se tak kromě věku ženy mohly zahrnout faktory ovlivňující počet ovulací. Tedy věk při začátku menstruace, užívání hormonální antikoncepce a další. Pokud totiž máme dvě různé ženy ve věku 35 let, ze kterých jedna dlouhodobě brala hormonální antikoncepci, zatímco druhá ne, byla by u té první mnohem menší pravděpodobnost výskytu chromozomálních poruch plodu,“ zmiňuje konkrétní možné budoucí využití výsledků Lenka Gahurová.
Skloubení osobního a vědeckého života
Lenka Gahurová je důkazem, že vědecká kariéra může jít ruku v ruce s úspěšným osobním životem. Během doktorátu na Cambridge se závodně věnovala veslování. V době největšího vytížení stíhala vedle výzkumu až 13 tréninků týdně. Dvakrát dokonce reprezentovala Cambridge na prestižních závodech proti Oxfordu. Po návratu do České republiky již šestým rokem úspěšně kombinuje úspěšnou vědeckou kariéru s péčí o své dvě malé děti.
Mgr. Lenka Gahurová, Ph.D., držící rypoše
JUNIOR STAR
Granty JUNIOR STAR jsou určeny pro excelentní začínající vědce, kteří získali titul Ph.D. před méně než 8 lety a kteří již publikovali v prestižních mezinárodních časopisech a absolvovali významnou zahraniční stáž. Díky pětiletému projektu s možností čerpat až 25 milionů Kč umožňují granty JUNIOR STAR vědecké osamostatnění a případné založení vlastní výzkumné skupiny. Na podporu dosáhne pouze zlomek podaných projektů. Pro rok 2024 bylo podpořeno 17 z celkových 175 návrhů projektů.
Grantová agentura České republiky podpoří po jednom projektu společně s americkou agenturou National Science Foundation (NSF) a německou Deutsche Forschungsgemeinschaft (DFG). Dalších 16 mezinárodních projektů podpoří společně s polskou agenturou Narodowe Centrum Nauki (NCN). Americko-český a německo-český projekt začnou vědci řešit od října letošního roku, polsko-české projekty od ledna 2025. Další mezinárodní projekty budou oznámeny v příštích měsících.
Projekt financovaný NSF a GA ČR
Reg. č.
Navrhovatel
Název projektu
Uchazeč
Doba řešení
24-10402L
Ing. Roman Kodým, Ph.D.
Studium nanostrukturních elektrod pro selektivní recyklaci homogenních katalyzátorů
Vysoká škola chemicko-technologická v Praze, Fakulta chemické technologie
Projekty byly hodnoceny formou Lead Agency (LA), kdy návrhy těchto projektů hodnotila pouze zahraniční partnerská agentura a GA ČR výsledky hodnocení převzala. Další mezinárodní projekty, včetně trilaterálních s NCN, na jejichž řešení se budou podílet vědci za tří zapojených států, budou oznámeny v příštích měsících. Smlouvy o poskytnutí dotace budou s příjemci grantů začínajících v roce 2025 uzavřeny na začátku příštího roku.
Paleobiologie již léta není vědou o popisu a klasifikaci schránek, kostí a zubů. Je to moderní vědní obor, který se zabývá hledáním struktury fosilních ekosystémů a procesů, které byly hybateli jejich vývoje. Katarína Holcová z Přírodovědecké fakulty Univerzity Karlovy se se svými spolupracovníky v rámci výzkumu podpořeného Grantovou agenturou České republiky (GA ČR) zabývala organismy, které v minulosti kolonizovaly pevné schránky jiných živočichů.
V průběhu evoluce se stavba ekosystémů stávala složitější a vznikaly mnohem komplexnější a komplikovanější vzájemné vztahy uvnitř ekosystémů i mezi nimi. Díky tomu se vyvíjely nové druhy organismů specializované na nové životní strategie.
Výzkumný tým vedený Katarínou Holcovou si pro studium zvolil ekosystémy stojící stranou „mainstreamového“ zájmu – endolitické a epibiontní organismy, tedy ty, které žijí uvnitř hornin nebo na povrchu jiných organismů. Zmapování struktur a vztahů málo známých ekosystémů je totiž stejně důležité jako studium těch populárních, jako jsou např. útesy. Vzniklá mozaika informací z minulosti se tak stává komplexnější a pomáhá nám nahlédnout na současnost.
Řešení výzkumného projektu vyžadovalo mezioborovou spolupráci, a proto se do něj zapojili vědci a vědkyně z různých institucí, kteří ovládají různé přístupy. Kromě badatelů z Přírodovědecké fakulty Univerzity Karlovy se do jeho řešení zapojili také výzkumníci z Geologického a Botanického ústavu AV ČR, Národního muzea a Západočeské univerzity v Plzni.
V rámci výzkumného projektu se odborníci zabývali trojicí opomíjených životních strategií, které však mají společného jmenovatele – pevnou schránku. Zaměřili se na organismy, které sice sami často pevnou schránku nemají, ale využívají schránky jiných organismů jako substrát, tedy prostředí ke kolonizaci. Schránky lze kolonizovat třemi způsoby – dovnitř, na vnějším povrchu nebo na povrchu vnitřním, a to jak za života hostitelského organismu, tak po jeho odumření v různých fázích rozkladu.
„Navrtávači schránek“ a koloběh uhlíku
První skupinu strategií představovaly tzv. endolitické organismy, které jsou schopné se zavrtat do různých pevných schránek (zejména karbonátových), které pak využívají převážně jako zdroj živin. Autotrofní organismy vyhledávají zvláště tzv. „mikroživiny“, zatímco heterotrofní organismy konzumují vrstvičky organické hmoty ve schránkách nebo se provrtají k čerstvě odumřelé tkáni uvnitř schránek. Dalším významným důvodem, proč organismy navrtávají schránky, je budování skrýší.
Ať už endolitické organismy vrtají do schránek z důvodu vyhledávání živin nebo skrýše, tak se díky destrukci vápnitých substrátů velice aktivně (což zatím není zcela doceněno) zapojují do biogeochemického cyklu anorganického uhlíku. Jedná se v současné době v souvislosti s klimatickými změnami o zvláště aktuální téma.
Odlitky mikrovrteb pravděpodobně mikroskopických hub ve stěně schránky dírkovce rodu Sorites. Endolitické organismy destruovaly odhadem 30 % schránkové hmoty již krátce po odumření organismu. Rudé moře, Izrael. Délka obrázku 300 µm.
Staré chodbičky a moderní zobrazovací metody
Vrtavé organismy jsou vesměs měkkotělé, a proto jsou jejich „body fossils“, neboli přímo fosilizovaná těla či jejich části, extrémně vzácné. Roli a význam těchto organismů v procesu rozkladu vápnitých substrátů proto můžeme interpretovat pouze ze stop po jejich činnosti, které nacházíme nejčastěji v podobě chodbiček různých tvarů a velikostí (ichnofosilie). Na základě jejich morfologie pak odhadujeme původce, kterými mohou být v případě mikroichnofosilií bakterie, sinice, drobné zelené řasy nebo mikroskopické houby. Původci makrovrteb jsou pak některé mnohobuněčné organismy, jako jsou živočišné houby (tj. houbovci či spongie) nebo různé organismy s červovitým tělem.
Vrtavé struktury se nacházejí uvnitř stěn schránek. Pokud chceme porozumět jejich 3D morfologii nebo zjistit pozici ve stěně schránky, musíme použít technicky náročnou metodologii a využít kombinaci moderních zobrazovacích technik.
V rámci projektu financovaném GA ČR se výzkumný tým Kataríny Holcové zabýval limity a výhodami jednotlivých zobrazovacích technik, které se využívají ke studiu a determinaci různých druhů vrteb. Kombinace nových a klasických postupů při výzkumu vrtavé činnosti organismů přinesla sérii zajímavých výsledků. Jednalo se například o potvrzení revoluce protist (prvoků) známé z konce spodního devonu u dírkovců a mřížovců i na úrovni endolitických organismů, které vědci studovali na příkladech změn ichnospolečenstev v mořském prostředí staršího paleozoika v oblasti barrandienu.
Zdánlivě chaotická síť průlezových chodbiček uvnitř stočeného trilobita druhu Pricyclopyge binodosa, která ukazuje cílené prožírání mršiny a využití rozkládajících se tkání. Snímek je získaný pomocí počítačové mikrotomografie, trilobit pochází z ordoviku barrandienské oblasti.
Na materiálu z miocénu Centrální Paratetydy výzkumníci zdokumentovali silně redukované přežívání vrtavých organismů v prostředí se sníženým obsahem kyslíku. To omezovalo biogenní rozklad karbonátových schránek v tomto prostředí a brzdilo návrat anorganického uhlíku do uhlíkového cyklu.
Život na schránkách i v jejich bezpečí
Druhou významnou životní strategii reprezentovali epibionti, tedy organizmy, které žili převážnou část svého života pevně přichyceny na schránce hostitelského organizmu. Díky grantovému projektu se výzkumníkům podařilo nahlédnout do raného utváření tohoto specifického ekosystému v sukcesi nejstarších společenstev pražské pánve.
První komplexní ekosystém epibiontů z ordoviku barrandienu
Třetí strategii představují organismy, které kolonizují vnitřní povrch schránek těsně po odumření organismu, který schránku vytvořil. Pod schránkou nebo uvnitř ní je prostor, kde dochází k postupnému rozkladu měkkých tkání. Na nich se živí sukcese „mrchožroutů“. Fosilní záznam tohoto komplexního ekosystému, který je klíčový pro recyklaci organické hmoty a energie, je většinou také redukován jenom na ichnofosilie. V rámci grantového projektu odborníci prostudovali jeden z nejstarších, výjimečně zachovaných případů z ordoviku, které nabízí výše zmíněná oblast barrandienu.
Výzkumný projekt jako odrazový můstek
I díky grantové podpoře mohli výzkumníci po skončení projektu publikovat článek v prestižním časopise Nature, který se týkal objevu krunýře trilobita, pod kterým byl in situ zachován obsah trávicího traktu. Tato naprosto unikátní fosilie umožnila zrekonstruovat příběh trilobita od odumření až po pokusy využít jeho mršiny jako zdroje potravy.
„Článek vlastně završil studium třetí strategie zmíněné v předchozím odstavci, ovšem už jej nemělo praktický smysl GA ČR dedikovat, protože výstupy projektů se sledují pouze do jednoho roku od jeho ukončení. Přesto jsme v poděkování grantový projekt uvedli, protože se ho bytostně týkal,“ podotýká Holcová. „I přes pandemii COVID jsme díky aktuálním opatřením GA ČRu grantový projekt úspěšně ukončili, i když s určitými omezeními a změnami. Zejména se jednalo o terénní výzkumy, které bylo nutné přesunout až ke konci financování projektu. Některé výstupy grantu budou ještě publikovány v odborných článcích v příštím roce a stanou se rovněž součástí tří dizertačních prací vesměs zahraničních doktorandů,“ doplňuje.
Jeden z výzkumných směrů, kterým Holcová a její tým na výzkumný projekt navazují, je využití moderní náročné zobrazovací metody zvané počítačová nanotomografie. Rozlišení klasických mikrotomografických metod je totiž na mikrovrtby, jejichž průměr se pohybuje v řádu µm, nedostatečné. Nanotomografické zobrazení umožňuje kvantifikovat podíl objemu mikrovrteb ve vápnitých schránkách, a tím i podíl vrtavých organismů na cyklu anorganického uhlíku.
Další zatím nepublikovaný výsledek projektu je i dosud nepopsaný nový ichnodruh mikrovrtby z rujanské křídy, původcem vrtavé činnosti byla mořská mikroskopická houba (mikromycet). V rámci výzkumu je vytvořen i model vzniku bioerozí na schránkách dírkovců, který rekonstruuje prostředí na dně křídového moře.
Model destrukce vápnitých schránek vrtavými mikroorganizmy v rujanské křídě
Velkým překvapením a zadostiučiněním za práci vloženou do přípravy a řešení projektu byl pro řešitele projektu zájem vědeckých kolegů na mezinárodních konferencích. Přednášky zaměřené na uvedené životní strategie vázané na schránky organismů vzbudily následné diskuze, a dokonce se staly inspirací pro několik odborných článků kolegů vědců v zahraničí.
A tak dosud přehlížené téma začalo žít novým životem nejenom na jejich pracovišti, ale i ve světě.
Autoři: Katarína Holcová, Petr Kraft (Ústav geologie a paleontologie, Přírodovědecká fakulta UK, Praha), Jana Bruthansová (Národní muzeum Praha)
Rada pro výzkum, vývoj a inovace (RVVI) vypsala výzvy k podávání návrhů kandidátů/kandidátek do předsednictva GA ČR a do vědecké rady GA ČR a na předsedy/předsedkyně těchto orgánů. Termín pro podání návrhů je 13. září 2024.
Výzva na 2 členky / členy předsednictva GA ČR a předsedkyni / předsedu GA ČR
RVVI vypisuje výzvu s ohledem na končící funkční období předsedy prof. RNDr. Petra Baldriana, Ph.D., a členky předsednictva RNDr. Alice Valkárové, DrSc., kteří v rámci předsednictva GA ČR zodpovídají za oblast zemědělských a biologicko-environmentálních věd a věd o neživé přírodě.
Funkční období členů předsednictva je čtyřleté s možností jmenování nejvýše na dvě po sobě následující období.
Předpokládané zahájení výkonu funkce je prosinec 2024 / leden 2025.
Výzva na 2 členky / členy vědecké rady GA ČR a předsedkyni / předsedu vědecké rady GA ČR
Vědecká rada je koncepčním orgánem, který zejména navrhuje předsednictvu GA ČR ustavení a zaměření oborových komisí, skupiny grantových projektů a jejich zaměření, vyhodnocuje vědeckou úroveň GA ČR a navrhuje potřebná opatření.
Funkční období členů vědecké rady je čtyřleté s možností jmenování nejvýše na dvě po sobě následující období.
Semena rostlin jsou nejen fascinující orgány, ale také důležitá součást našeho jídelníčku. Dobrá kvalita semen je také nezbytná z hlediska jistoty zemědělské produkce. Cílem projektu podpořeného GA ČR vedeného prof. Petrem Smýkalem z katedry botaniky Přírodovědecké fakulty Univerzity Palackého v Olomouci bylo doplnění informací o dormanci semen – tedy době, kdy semena vyčkávají na signál pro klíčení – domestikovaného a planého hrachu.
Domestikace a vývoj semen rostlin
Semena rostlin jsou základním zdrojem potravy pro lidstvo již od počátků zemědělství a zůstávají klíčovým prvkem naší stravy dodnes. Asi 70 % potravin určených k lidské spotřebě představují semena, jako jsou obiloviny (pšenice, rýže, kukuřice), luštěniny (fazole, sója), olejniny (řepka, sója, slunečnice) a mnoho dalších. Semena jsou bohatým zdrojem energie, bílkovin, vlákniny, vitamínů i minerálů a jsou nezbytná pro zabezpečení stravy rostoucí světové populace, zvláště v kontextu probíhající klimatické změny. Porozumění procesům, které umožňují semenům plnit jejich biologické funkce, je proto důležité pro pochopení nejen rozmnožování rostlin, ale má také i praktický význam pro zemědělství.
Člověk svojí pěstitelskou činností domestikoval mnoho rostlin, které proměnil na základě svých potřeb a preferencí. Důležitými kritérii byly nejen chuť, barva (Obr. 1), výnos apod., ale také snaha o odstranění dormance semen a zabránění jejich přirozenému šíření. Nebylo by přece výhodné a pro přežití ani možné, aby semena vyklíčila až po několika letech.
Obr.1: Vliv domestikace na vlastnosti semen, jejich obranyschopnost a chuť. Na levé straně je zobrazený planý hrách, který disponuje vysokým stupněm dormance, obrannými metabolity ale není vhodný na konzumaci. Vpravo je domestikovaný hrách bez dormance, avšak s nižším obsahem obranných metabolitů v osemení, vhodným ke konzumaci chuťově i nutričním složením (Klčová et al. 2024).
Fascinující svět semen
Semena rostlin jsou fascinující orgány, které umožňují přežití rostlin a jejich další šíření. Poté, co se semena oddělí od mateřské rostliny, musí přežívat v často nehostinném prostředí a vypořádat se s řadou nástrah, jako jsou kupříkladu nejrůznější skupiny patogenních organismů. V obraně semen hraje zásadní roli jejich obal, tzv. osemení, které obsahuje specifické látky (především fenolické sloučeniny) a enzymy. Struktura a chemické složení osemení ovlivňuje také dormanci semen, tedy dobu, kdy semena vyčkávají na signál pro klíčení, jež je typická pro semena planých rostlin. Tímto tématem se skupina vedená prof. Petrem Smýkalem z katedry botaniky Přírodovědecké fakulty Univerzity Palackého v Olomouci zabývá již dlouhodobě.
Vývoj semen zahrnuje koordinovanou spolupráci tří geneticky odlišných entit: embrya, které představuje další generaci, endospermu, který slouží k jeho výživě, a mateřské rostliny, která přispívá osemením a oplodím k ochraně semene. Ačkoli se morfologie semen u různých čeledí rostlin liší (a používá se taxonomicky), základní složky jsou velmi konzervované. Mnoho informací týkajících se genetické regulace vývoje embrya bylo získáno studiem mutantů, zejména huseníčku (Arabidopsis thaliana), avšak tento model neumožňuje studovat všechny aspekty vývoje semen, jako je např. fyzikálně daná dormance semen typická právě pro semena bobovitých rostlin.
Vedle zásobních látek (jako jsou škrob, olej, proteiny) semena akumulují širokou škálu sekundárních metabolitů. Zejména fenolické látky (fenylpropanoidy), alkaloidy a různé další metabolity, které zvyšují jejich toleranci k vysychání a zlepšují odolnost proti abiotickému (sucho, teplota, UV záření) a biotickému (býložravci, patogeny a rostlinní konkurenti) stresu.
Po dokončení vývoje jsou zralá semena schopna klíčit, což však může být potlačeno navozením dormance, které je spojené se snížením obsahu vody v semeni a ukládáním zásobních látek. Dormance umožňuje šíření semen jak v prostoru, tak čase (některá semena mohou přežívat i desítky až stovky a v extrémních případech i tisíce let). Po přijetí vody semeno nabobtná a obnoví se metabolická aktivita, což znamená začátek klíčení semen. Fáze klíčení je ukončena okamžikem, kdy kořenová špička (radicula) protrhne osemení (Obr. 2), a od tohoto okamžiku pak již mluvíme o klíční rostlince. Pochopení dlouhověkosti a stárnutí semen, která vede ke ztrátě životaschopnosti během skladování, má zásadní význam pro ochranu rostlin a zemědělství.
Obr. 2: Raná fáze klíčení semene hrachu, protržení osemení v místě růstu radikuly (šipka).
Dormance semen
Načasování klíčení semen je jedním z klíčových kroků v životě rostlin. Určuje, kdy se rostliny zapojí do přírodních nebo zemědělských ekosystémů, a je základem pro produkci plodin. Dormance semen a klíčení jsou dva protichůdné, ale úzce spojené procesy, které jsou druhově specifické. Rozhodující je vnímavost k podmínkám prostředí. Semena některých druhů rostlin klíčí v jejich širokém rozmezí, naopak jiné jsou úzce specializované a potřebují velmi specifické podmínky. Jejich znalost je důležitá pro pochopení evoluce rostlin a adaptace k přírodním podmínkám. Přestože dormance je užitečná pro přežití semen v přírodě, kde jsou podmínky nejisté a nekonstantní, pro zemědělství a lidskou spotřebu je žádoucí, aby semena na poli klíčila rychle.
Výzkumníci se v rámci projektu se zaměřili na popis a porovnání vývoje osemení planého a kulturního hrachu, s důrazem na odlišnosti v dormanci. V rámci řešení projektu sledovali nejenom vývoj osemení, ale také genetické a fyziologické aspekty ovlivňující dormanci semen a jejich odlišnost mezi semeny planého a kulturního hrachu. Výsledky projektu přinesly nový pohled na vývoj semen luskovin a zejména pak na vývoj osemení, a to na základě srovnávací analýzy planě rostoucích a domestikovaných druhů hrachu.
Práce vědeckého týmu pod vedením prof. Smýkala představuje první komplexní popsání molekulárně biologických mechanismů (genové exprese, proteomiky a metabolomiky) vývoje osemení hrachu ve vztahu k dormanci semen a domestikaci. Kombinované metodické přístupy (anatomie, analytická chemie, proteomika, biochemie a molekulární biologie) vedly k identifikaci nových aspektů domestikace hrachu (Klčová et al. 2024, Plant Journal) a doplnily tak předchozí studie výzkumného týmu. Navíc při zkoumání profilů metabolických látek, především fenolických metabolitů a nepolárních složek kutinu (látek voskovité povahy v buněčných stěnách rostlin), výzkumníci vyvinuli nové postupy analýzy chemického složení, které zahrnují přípravu mikrovzorků pomocí elektronicky řízené mikromanipulace pod mikroskopickou kontrolou a zobrazování hmotnostní spektrometrií s laserovou desorpcí-ionizací (Krejčí et al. 2022, Talanta).
Při pátrání po klíčových hráčích zapojených v regulaci dormance semen a vývoje osemení planých a kulturních hrachů objevili výzkumníci gen kódující enzym polyfenoloxidasu (PPO). Společnými silami s kolegy z Katedry analytické chemie (vedené doc. Petrem Bednářem) a Katedry biochemie (vedené dr. Janou Sekaninovou) Přírodovědecké fakulty Univerzity Palackého a dalšími pracovišti se výzkumníkům podařilo poodhalit funkci tohoto genu. Zjistili, že tento gen byl během procesu domestikace selektován a jeho funkce mění vlastnosti osemení (Balarynová et al. 2022 New Phytologist), a to nejen u hrachu, ale i dalších luskovin (Jayakodi et al. Nature 2023). Prokázali, že aktivita PPO je nutná pro oxidaci a polymerizaci řady fenolických látek v osemení planého hrachu. Tyto procesy se projevují také pigmentací pupku (Obr. 3), který může představovat pomyslnou ,,Achillovu patu“ obrany semen, na což navázal v současnosti řešený nový projekt podpořený GA ČR.
Obr. 3: Vztah mezi pigmentací pupku (hila) a aktivitou PPO. a), b) – pupky semen kulturních rostlin s neaktivní formou genu pro enzym PPO, c), d) – pupky semen planých rostlin hrachu s aktivní formou genu pro enzym PPO (Balarynová et al. 2022).
Domestikace změnila vývoj semen hrachu (tak jako u jiných plodin) a modifikovala (většinou snížila) složení látek, které semeno produkuje (transkriptů, proteinů a metabolitů), zejména těch zapojených v obraně semen. Můžeme předpokládat, že semena planých předchůdců dnešních plodin mají delší životnost a odolnost vůči stresu. Toto je však potřeba ještě experimentálně ověřit. Vzhledem k tomu, že semena planého hrachu musí mnohem přesněji monitorovat a reagovat na různé biotické a abiotické signály z prostředí, je u nich vyšší rozmanitost proteinů a metabolitů přítomných v jejich osemení.
Hlubší pochopení vývoje osemení umožňuje ovlivnění velikosti semen prostřednictvím změny genové exprese a zlepšení ochrany semen během jejich klíčení a skladování. Znalost biologie vývoje a klíčení semen má široké spektrum uplatnění, zasahující od výzkumu přes praxi v zemědělství a potravinářském průmyslu až po výživu a ochranu životního prostředí.
Výsledky tohoto výzkumu poskytly cenné poznatky pro porozumění biologie rostlin a procesu dormance semen a mohou mít praktické využití při šlechtění nových odrůd hrachu s lepšími vlastnostmi klíčení a výnosu. Takové informace mohou vést k vývoji odolnějších a výkonnějších kultivarů hrachu, což může přispět ke zlepšení produkce potravin a udržitelnosti zemědělství.
Vědecký tým z Fakulty rybářství a ochrany vod Jihočeské univerzity v Českých Budějovicích pod vedením Jana Mráze učinil významné objevy v oblasti hospodářství na rybnících a výživy ryb díky projektu podpořenému Grantovou agenturou České republiky (GA ČR).
Docent Mráz a jeho tým zjistili, že přirozená potrava a ekosystém v rybnících mohou výrazně zlepšit trávení kaprů. Konkrétně plankton a rybníkový ekosystém společně pomáhají kaprům rozkládat těžko stravitelné součásti potravy, jako je celulóza, chitin nebo fosfor. Vědci také přišli na to, že v obdobích, kdy je voda čistá a vyskytuje se v ní málo řas, ale hodně drobného zooplanktonu, je trávení kaprů ještě účinnější. Tento efekt, který se nazývá „synergický efekt trávení“ a který řešitelé projektu teoreticky popsali v roce 2022 a ověřili v letošním roce, by mohl v budoucnu pomoci zlepšit a zefektivnit hospodaření na rybnících (Obr. 1).
Obr. 1 (BioRender JA26MXISBO)
Další objev, který se vědcům v rámci projektu podařil, se týká hospodaření ryb s fosforem v mělkých jezerech. Při aktivním příjmu potravy (aktivní metabolismus) ryby obvykle vyvažují své hladiny živin uvolňováním přebytečného dusíku a fosforu, což prospívá růstu řas.
Ryby však mohou ukládat více fosforu a poskytovat menší množství této živiny řasám, pokud je přijímaná potrava bohatá na lysin a methionin v poměru k celkovému příjmu bílkovinné a nebílkovinné energie (tj. podíl sacharidové a lipidové energie v celkovém příjmu energie), a to až do té míry, že by mohlo dojít k potenciální absorpci fosforu z vody. Naopak, nedostatek těchto živin v potravě vede ke zvýšenému uvolňování fosforu rybami, což podporuje růst řas. Vědci také zjistili, že šupinaté ryby mají tendenci recyklovat méně fosforu pro řasy než ryby bez šupin.
Z podpořeného výzkumu vyplývá, že ne všechny druhy uhlíku, dusíku nebo fosforu ve vodních potravních řetězcích jsou stejně důležité pro předpověď recyklace fosforu rybami. Určité formy dusíku a uhlíku mají větší vliv na regulaci hladiny fosforu. Umělé vyvažování rybí stravy a udržování populací šupinatých ryb by mohlo v budoucnu nabídnout řešení pro zvládání eutrofizace (procesu obohacování vod o živiny). Součástí výsledku projektu docenta Mráze a jeho týmu je studie zveřejněná v prestižním časopise Science of The Total Environment.
Obr. 2 (BioRender MQ26VEPQTJ)
Tato zjištění z projektu GA ČR 22-18597S představují významný krok vpřed v oblasti nutriční ekologie vodních konzumentů a teorie ekologické stochiometrie sladkovodních ekosystémů. Výsledky jsou cenné pro řízení cyklů živin a eutrofizace mělkých jezerních ekosystémů, včetně rybníků. Výzkumný tým rovněž dodržoval praxi otevřené vědy, jelikož datové sady byly spolu s publikacemi zpřístupněny veřejnosti.
Autoři článku: Koushik Roy, Ph.D., doc. Antonín Kouba, Ph.D.
Roy, K., Kajgrova, L., Capkova, L., Zabransky, L., Petraskova, E., Dvorak, P., Nahlik, V., Kuebutornye, F.K.A., Blabolil, P., Blaha, M., Vrba, J. and Mraz, J., 2024. Synergistic digestibility effect by planktonic natural food and habitat renders high digestion efficiency in agastric aquatic consumers. Science of the Total Environment, 927, 172105. (IF 2023: 9.8). Linked Dataset.
Roy, K., Vrba, J., Kuebutornye, F.K., Dvorak, P., Kajgrova, L. and Mraz, J., 2024. Fish stocks as phosphorus sources or sinks: Influenced by nutritional and metabolic variations, not solely by dietary content and stoichiometry. Science of the Total Environment 938, 173611. (IF 2023: 9.8). Linked Dataset.
Grantová agentura České republiky (GA ČR) se aktivně podílí na podpoře otevřené vědy (Open Science) s cílem zvýšení transparentnosti a přístupnosti výsledků vědeckého výzkumu jí podpořených projektů. Náklady spojené s principy otevřené vědy je možné hradit z rozpočtu uděleného grantu.
Otevřená data (Open Data)
Výzkumná data jsou nezbytná k možnosti ověření a dalšího využití výsledků výzkumu. Aby GA ČR dostála svým zákonným povinnostem v oblasti otevřených dat, zahrnula správu výzkumných dat do politiky podpory grantových projektů. Cíle této politiky:
všechny vědecké publikace vzniklé v rámci projektů financovaných GA ČR mají dohledatelná otevřená data (se zákonnými výjimkami jako ochrana duševního vlastnictví, obchodního tajemství, bezpečnosti státu nebo oprávněných obchodních zájmů příjemce nebo třetí osoby)
řešitelé projektů GA ČR předkládají plán správy dat (Data Management Plan – DMP) nejpozději k datu doručení první dílčí zprávy projektu a pravidelně tento plán aktualizují
otevřená data naplňují principy FAIR, tj. jsou dohledatelná, přístupná, interoperabilní a opětovně využitelná (Findable, Accessible, Interoperable, and Reusable)
náklady spojené s otevřenými daty jsou způsobilými náklady projektu, GA ČR doporučuje zřídit v rámci projektu pozici odborníka na správu dat (data stewarda)
Plán správy dat (Data Management Plan)
Plán správy dat je předkládaný GA ČR nejpozději s první dílčí zprávou (pro projekty řešené od roku 2024 a pozdější), v případě potřeby je nezbytné ho aktualizovat, a to v další předložené dílčí nebo závěrečné zprávě o řešení projektu.
Plán správy dat by měl obsahovat minimálně informace o tom:
jaká výzkumná data bude příjemce v rámci projektu vytvářet, zpracovávat nebo sbírat
jaké metody a zásady jejich správy příjemce použije
zda a jakým způsobem budou data sdílena, publikována nebo uveřejňována, případně odůvodnění, proč nemohou být výzkumná data šířena a zveřejňována (příjemce nezveřejní informace o výzkumných datech, jejichž zveřejněním by došlo k nepřiměřenému zásahu do práva na ochranu duševního vlastnictví, obchodního tajemství, bezpečnosti státu nebo oprávněných obchodních zájmů příjemce nebo třetí osoby)
jakým způsobem budou data ukládána během řešení projektu a uchovávána po skončení projektu
Jako vhodný nástroj pro vytváření a správu plánu správy dat GA ČR doporučuje využít následujících, ale i jiných vhodných nástrojů, jako jsou například:
Šablona Data Management Plan vycházející ze vzoru pro program Horizont Evropa (její překlad je dostupný v repozitáři Národní technické knihovny)
Případně je možné použít i další vhodné nástroje pro přípravu plánu správy dat.
Otevřený přístup (Open Access)
Vědecké publikace zveřejněné ve formě otevřeného přístupu mohou být čteny, stahovány a používány badatelskou komunitou i širokou veřejností bez omezení. Přestože je tato forma publikování vědeckých výsledků obvykle spojena s finančními náklady, GA ČR ji doporučuje využívat, protože vede k větší využitelnosti nových poznatků a tím také ke zvýšení efektivity vynaložených prostředků na řešení projektů. GA ČR podporuje otevřený přístup ve všech jeho formátech, tj. Green Open Access, Gold Open Access i Diamond Open Access. Z prostředků grantů je možné hradit náklady na publikování formou otevřeného přístupu.
Za posledních 10 let se počet publikací projektů financovaných GA ČR publikovaných v otevřeném režimu zdvojnásobil.
GA ČR respektuje svobodnou volbu řešitelů vybrat, jakou formou a v jakých publikačních mediích budou svoje výsledky publikovat. Publikovat formou otevřeného přístupu je pro řešitele projektů financovaných GA ČR doporučené, nikoli povinné. Je odpovědností každého vědce zvážit, v jakém vědeckém časopisu je vhodné výstupy svého výzkumu zveřejnit, a to i s ohledem na předpokládaný dopad publikace ve vědecké komunitě, kvalitu recenzního řízení i na praxi daného vědního oboru apod.
Publikování v otevřeném přístupu zdarma s CzechELib
GA ČR je členskou institucí Národního centra CzechELib Národní technické knihovny, které mimo dalších svých aktivit podporuje i publikování v režimu otevřeného přístupu. Možnost publikovat zdarma v režimu otevřeného přístupu ve vybraných časopisech mají díky CzechELib autoři prakticky ze všech klíčových institucí, které jsou součástí tohoto konsorcia. CzechELib sdružuje celkem 130 institucí. Pro možnost publikovat zdarma je nezbytné, aby vydavatel zvoleného časopisu měl tzv. transformační smlouvu s NTK a instituce korespondujícího autora byla součástí této smlouvy s vydavatelem – v úhrnu smlouvy pokrývají téměř 9 000 odborných časopisů u 14 vydavatelů.
Během procesu buněčné meiózy, která je nezbytná pro sexuální rozmnožování, dochází ke vzniku zlomů DNA a jejich následné opravě. PARG-1 je klíčový regulátor tohoto procesu, který hraje roli při udržování integrity genomu, a jeho studium může přinést relevantní poznatky pro lidské zdraví. Díky výzkumu podpořenému Grantovou agenturou ČR (GA ČR) zkoumal Nicola Silva z Masarykovy univerzity složitosti dynamiky oprav DNA v zárodečné linii.
Lidské buňky se skládají z 46 chromozomů, z nichž polovina je přijata od matky a druhá polovina od otce. Všechny sexuálně se rozmnožující organismy prochází procesem meiózy, při které se počet chromozomů v nově vzniklých pohlavních buňkách, spermiích a vajíčkách, sníží na polovinu. Po oplodnění se genetická informace nesená vajíčkem a spermií spojí do zygoty, čímž dojde k obnovení původního počtu chromozomů.
V průběhu meiózy existuje několik mechanismů, které zajišťují, že obě gamety, tedy spermie a vajíčko, obdrží správný počet chromozomů. Pokud je proces chybný, vede k tvorbě dysfunkčních gamet, které mohou vést k přenosu dědičných mutací na potomky.
Jedním z klíčových aspektů meiózy je výměna částí DNA u každého páru mateřských a otcovských homologních chromozomů v procesu nazývaném homologní rekombinace. V procesu zvaném crossover dojde ke vzniku takzvaných dvouřetězcových zlomů DNA (DSB z anglického double-strand breaks), mateřské a otcovské chromozomy se spojí a vymění si navzájem odpovídající části DNA sekvence. Díky crossoveru dochází přeuspořádání genetické informace v dceřiných buňkách a vzniku genetické rozmanitosti.
Počet zlomů vzniklých během meiózy v pohlavních buňkách je ovšem výrazně vyšší než počet crossoverů, což naznačuje, že opravné systémy, které využívají homologní sekvence k obnovení integrity genomu, se také podílejí na opravě zlomů, které ke crossoveru nevedou.
Přísná regulace počtu dvouřetězcových zlomů DNA
Přerušení řetězce DNA představuje nebezpečí z hlediska zachování integrity genomu, a proto musí být jejich počet, umístění i aktivace DNA opravných systémů, pečlivě regulovány. Vědci již identifikovali řadu genů, které jsou zodpovědné za procesy opravy DNA. Mutace v jakémkoliv z těchto opravných genů mohou u lidí výrazně zvýšit riziko vzniku nádorových onemocnění. Příkladem mohou být geny BRCA1/BRCA2, jejichž mutace je spojována se zvýšeným rizikem rakoviny prsu a vaječníků nebo Fanconiho anémií.
Jednou z cest, jakými je možné kontrolovat opravy DNA, je připojení chemických skupin k proteinu po jeho syntéze nebo odstranění signálních peptidů po buněčné lokalizaci v procesu nazývaném post-translační modifikace. Jednou z hlavních změn, ke kterým dochází v odpovědi na poškození DNA, je poly-ADP-ribosylace (PARylace), proces, při kterém jsou na substráty přidány jednotky ADP-ribózy, což vede k regulaci jejich aktivity. Ačkoli byla PARylace rozsáhle studována na výzkumných modelech ex vivo, její studium v živém savčím organismu je obtížné kvůli embryonální letalitě spojené s mutací, která vede k úplné ztrátě funkce u jejích „zapisovatelů“, PARP1/2. Tyto enzymy jsou zodpovědné za syntézu řetězců ADP-ribózy v reakci na genotoxický stres. In vivo studium také komplikuje enzym „vymazávač“ PARG, který působí proti aktivitě PARP1/2 tím, že rozkládá řetězce ADP-ribózy.
Hlístice Caenorhabditis elegans, která je často využívaná jako modelový organismus pro studium stability genomu, poskytuje obrovskou výhodu ve srovnání s jinými modelovými organismy, protože toleruje mutace, které vedou k zániku funkčnosti genů PARP1/2 i PARG, což umožňuje studium jejich funkce v zárodečné linii.
Nicola Silva z Biologického ústavu Lékařské fakulty Masarykovy univerzity díky projektu financovanému GA ČR provedl podrobnou in vivo analýzu rolí, kterou tyto proteiny plní, což vedlo k identifikaci jejich klíčových funkcí, zejména PARG-1 (homolog savčího PARG u C. elegans) během meiózy.
Díky využití technik úprav genomu (CRISPR) byli výzkumníci schopni lokalizovat pozici PARG-1 při vývoji vajíček. Jejich analýza odhalila, že PARG-1 je nedílnou součástí důležité meiotické proteinové struktury, která udržuje chromozomy pevně spojené během meiózy a nazývá se Synaptonemální komplex (SC), viz Obrázek 1.
Obrázek 1. Vajíčka v uvedeném stadiu obarvené na různé podjednotky SC a PARG-1 (GFP). Janisiw a kol.; Nature Communications, 2020.
Výzkumníci si také všimli, že PARG-1 vytváří proteinové komplexy s proteiny zapojenými do indukce a zpracování meiotických dvouvláknových zlomů také u jiných druhů. Díky studiu C. elegans zjistili, že je PARG-1 je důležitý pro regulaci počtu zlomů DNA během vývoje zárodečných buněk a napomáhá jejich přesné opravě pomocí homologní rekombinace, viz Obrázek 2.
Obrázek 2. Vajíčka obarvená na různé podjednotky SC a místa crossoverů u mutantů se sníženým počtem DSB po ozáření.; Janisiw a kol.; Nature Communications, 2020.
Vědci také zjistili, že PARG-1 hraje díky schopnost lokalizovat se podél chromozomů klíčovou roli při indukci dvouvláknových zlomů a homologní rekombinaci, což naznačuje, že nejenže vykonává enzymatické funkce, ale je důležitý i ze strukturního hlediska.
Výzkumníky také zajímala proteinová struktura, kterou PARG-1 a další proteiny vytváří v zárodečných buňkách. Tato analýza vedla k identifikaci fyzické a funkční interakce s komplexem BRC-1-BRD-1, který je u člověka homologem BRCA1-BARD1. Tyto proteiny hrají hlavní role při regulaci stability genomu v mitotických buňkách, avšak jejich funkce během meiózy je složitější. Výzkum odhalil, že současná odstranění PARG-1 a BRC-1 způsobí zvýšenou neplodnost v důsledku rozsáhlé nestability genomu. Zejména výzkumníci pozorovali, že mnoho DNA poškození vzniklých během meiózy nebylo správně opraveno, což vedlo k vytvoření fúzí chromozomů a sníženému množství rekombinací.
Při odstranění různých opravných drah DNA spolu s BRC-1/PARG-1 pozorovali výzkumníci zhoršující se integritu genomu způsobenou nedostatkem polymerázy POLQ-1, o které víme, že hraje roli při realizaci důležité opravné dráhy DNA nazývané alternative non-homologous end joining.
Obrázek 3. Vajíčka uvedeného genotypu a stádia obarvené na marker jednořetězcové DNA, který zvýrazňuje přítomnost neopraveného poškození v nepřítomnosti BRC-1-PARG-1.; Trivedi a kol.; Nucleic Acids Research, 2022.
Výzkum Nicola Silvy byl prvním in vivo důkazem, že při narušené funkci BRC-1/BRCA1 je aktivita PARG-1/PARG nezbytná pro zachování integrity genomu v gametách. Navíc jeho zjištění o letalitě vyvolané současným zrušením funkce POLQ-BRCA1 má obrovský význam pro léčbu rakoviny a je v souladu s nedávnými výzkumy, které u lidí vykazují slibné výsledky při cílení na nádorové buňky pomocí inhibitorů POLQ a mohly by sloužit jako nová cesta ke zlepšení léčebných výsledků u nádorů s mutacemi BRCA1. Jeho práce zdůrazňuje klíčovou roli, kterou modelové systémy hrají při analýze konzervovaných drah u jednodušších organismů.
Před pouhými dvaceti lety se světu otevřela brána do fascinujícího světa grafenu – látky s jedinečnými fyzikálními vlastnostmi. Mezi ty, kdo se ponořili do jeho zkoumání, patří i Martin Rejhon z Matematicko-fyzikální fakulty Univerzity Karlovy. Ve svém JUNIOR STAR projektu se zaměřuje na růst tří grafenových vrstev na sobě s cílem zajistit jejich využitelnost ve vývoji elektronických a optoelektronických zařízení.
Cesta ke grafenu
Grafen je speciální forma uhlíku, která má na výšku pouze jeden atom. Je tak 2D strukturou, která navíc nabízí ojedinělé fyzikální vlastnosti. Jedná se o materiál objevený poměrně nedávno, konkrétně v roce 2004, a v roce 2010 byla za něj udělena Nobelova cena. V tomto roce řešitel projektu JUNIOR STAR Martin Rejhon teprve nastupoval do bakalářského studia.
Výzkumu grafenu se věnuje od začátku doktorského studia. „Během doktorského studia jsem získal univerzitní grant na zkoumání světelných vlastností spojení karbidu křemíku [pozn. red.: sloučenina tvořená křemíkem a uhlíkem], označovaného jako SiC z anglického silicon carbide, a grafenu. Díky grafenu jsem se také dostal na stáž a později na postdoktorandský pobyt na New York University, kde jsem se zabýval mechanickými vlastnostmi 2D materiálů a jejich strukturálními změnami vyvolanými aplikovaným tlakem,“ popisuje doktor Rejhon svou cestu k výzkumu grafenu.
Kontrola atomárních vrstev grafenu
Při vysokých teplotách, dosahujících až 1700 °C, dochází k porušení kovalentních vazeb mezikřemíkem a uhlíkem karbidu křemíku, kdy křemík odlétá z povrchu, zatímco zbývající uhlík se začíná formovat do hexagonální struktury, tzv. včelí plástve, a utváří 2D materiál zvaný grafen.
V rámci svého projektu JUNIOR STAR se doktor Rejhon zaměřuje na přípravu více vrstev grafenu na sobě. „Abychom byli schopni kontrolovat uspořádání více grafenových vrstev, bude potřeba správně nastavit růstové podmínky, jako je teplota, čas, tlak a další. Na obrázku 1 je vidět práce s naší současnou růstovou aparaturou. V dolní části obrázku je patrný jasně bílý váleček, kde se ohřívá substrát SiC na vysoké teploty,“ vysvětluje svůj nelehký úkol řešitel projektu.
Obrázek 1 – Růstová aparatura grafenu
ABC uspořádání
Způsob, jakým jsou na sebe jednotlivé atomární vrstvy látek skládány, ovlivňuje jejich vlastnosti. Jeden způsob složení atomárních vrstev může z látky udělat izolant, zatímco jiný z ní vytvoří supravodič. Z tohoto důvodu je důležité mít nad způsobem uspořádání těchto atomárních vrstev kontrolu. „Náš výzkum bude primárně soustředěn na růst tří atomárních uhlíkových vrstev v ABC uspořádání, které má jedinečné vlastnosti vhodné pro aplikace v elektronice a optoelektronice. ABC uspořádání bohužel není nejběžnějším a v přírodě se více vyskytuje uhlík v ABA uspořádání nebo v úplně náhodném uspořádání,“ představuje hlavní oblast soustředění Martin Rejhon.
Součástí výzkumu bude příprava vzorků v ABC uspořádání, které vědci podrobně charakterizují a určí nejvhodnější parametry pro přípravu a složení grafenových vrstev. „Díky získanému grantu JUNIOR STAR pořídíme speciální mikroskop. Jeho princip si můžete zjednodušeně představit jako gramofon, kdy jehla jezdí po povrchu a zaznamenává výšku. Toto zařízení nám dovolí lokálně zkoumat elektrické, mechanické a další vlastnosti na škálách jednotlivých atomů až po mikrometry. Jakmile zvládneme růstovou etapu, pustíme se do vývoje elektronických a optoelektronických zařízení na ABC grafenu,“ dodává řešitel projektu.
Nové možnosti v elektronice a optoelektronice
Výzkumný tým si od projektu slibuje objevení nových možností využití grafenu v elektronice a optoelektronice. „Chceme například ukázat jeho možné využití jako detektoru dalekého infračerveného záření a záření v terahertzové oblasti. Tyto oblasti jsou v současnosti lákavé pro jejich využití v medicíně nebo bezpečnostních či komunikačních aplikacích,“ zmiňuje doktor Rejhon. Jedním z možných praktických využití výsledků bude nahrazení běžně používaného rentgenového záření, které je pro organismus škodlivé.
Mezinárodní tým z Matematicko-fyzikální fakulty Univerzity Karlovy na výzkumu spolupracuje s americkými New York University a Sandia National Laboratories nebo italským institutem Scuola Internazionale Superiore di Studi Avanzati.
RNDr. Martin Rejhon, Ph.D.
JUNIOR STAR
Granty JUNIOR STAR jsou určeny pro excelentní začínající vědce, kteří získali titul Ph.D. před méně než 8 lety a kteří již publikovali v prestižních mezinárodních časopisech a mají významnou zahraniční zkušenost. Díky pětiletému financování s možností čerpat až 25 milionů Kč umožňují granty JUNIOR STAR vědecké osamostatnění a případné založení vlastní výzkumné skupiny. Na podporu dosáhne pouze zlomek podaných projektů. Pro rok 2024 bylo podpořeno pouze 17 z celkových 175 návrhů projektů.
Abychom poskytli co nejlepší služby, používáme k ukládání a/nebo přístupu k informacím o zařízení, technologie jako jsou soubory cookies. Souhlas s těmito technologiemi nám umožní zpracovávat údaje, jako je chování při procházení nebo jedinečná ID na tomto webu. Nesouhlas nebo odvolání souhlasu může nepříznivě ovlivnit určité vlastnosti a funkce.
Funkční
Vždy aktivní
Technické uložení nebo přístup je nezbytně nutný pro legitimní účel umožnění použití konkrétní služby, kterou si odběratel nebo uživatel výslovně vyžádal, nebo pouze za účelem provedení přenosu sdělení prostřednictvím sítě elektronických komunikací.
Předvolby
Technické uložení nebo přístup je nezbytný pro legitimní účel ukládání preferencí, které nejsou požadovány odběratelem nebo uživatelem.
Statistiky
Technické uložení nebo přístup, který se používá výhradně pro statistické účely.Technické uložení nebo přístup, který se používá výhradně pro anonymní statistické účely. Bez předvolání, dobrovolného plnění ze strany vašeho Poskytovatele internetových služeb nebo dalších záznamů od třetí strany nelze informace, uložené nebo získané pouze pro tento účel, obvykle použít k vaší identifikaci.
Marketing
Technické uložení nebo přístup je nutný k vytvoření uživatelských profilů za účelem zasílání reklamy nebo sledování uživatele na webových stránkách nebo několika webových stránkách pro podobné marketingové účely.